Caractérisation S-adique des sous-shifts minimaux de complexité inférieur à 2n+1


Julien Leroy, Université du Luxembourg. 3 avril 2014 13:30 limd 2:00:00
Abstract:

Généralisant les systèmes dynamiques symboliques substitutifs, un système est dit $S$-adique si son langage est obtenue par itérations successives de substitutions appartenant à l'ensemble fini $S$. La suite de substitutions itérées en est alors une représentation $S$-adique et fournit des informations sur le système (minimalité, nombre de mesures ergodiques, fréquence des lettres,...). Dans cet exposé, je développerai une méthode basée sur les graphes de Rauzy et les mots de retour permettant de construire une représentation $S$-adique ``canonique''. Dans le cas des sous-shifts minimaux dont la différence première de complexité en facteur est majorée par 2 (contenant notamment les sous-shifts sturmiens, d'Arnoux-Rauzy ainsi que les codages de rotations et d'échange de 3 intervales), cette méthode fournit une caractérisation $S$-adique, où $S$ contient 5 substitutions. En particulier, cette caractérisation répond à la conjecture $S$-adique pour ce cas particulier.