À venir
Un corps de Hardy est un corps différentiel, pour les opérations point par point, de germes à l'infini de fonctions réelles définies sur des voisinages de l'infini. Si son sous-ensemble des germes de fonctions tendant vers l'infini à l'infini est stable par composition et inversion fonctionnelle des germes, alors cet ensemble a une structure de groupe totalement ordonné. Il n'est certes pas commutatif, mais présente des traits commutatifs permettant de simplifier l'étude d'équations et inégalités fonctionnelles, relativement à leur étude dans des groupes ordonnés généraux. Je définirai ces objets et notions, et présenterai des propriétés élémentaires de ces groupes ordonnés de germes. Je montrerai comment résoudre des équations fonctionnelles sur ces groupes dans des extensions qui sont des groupes de séries formelles généralisées, comme les transséries.
Les compactifications équivariantes de groupes, comme les variétés toriques ou les compactifications d’espaces vectoriels, sont des familles-tests régulièrement mises à contribution dans l’étude de la répartition des points rationnels sur les variétés algébriques (conjecture de Manin-Peyre).
Notamment, à la fin des années 90, l’emploi d’outils d'analyse harmonique a permis à Victor Batyrev et Yuri Tschinkel d’établir une formule asymptotique pour le nombre de points rationnels de hauteur anticanonique bornée sur une variété torique, en faisant un usage clef d’une formule de Poisson adélique. Puis, au début des années 2000, ce résultat a été étendu aux corps de fonction de charactérique positive par David Bourqui. Un peu plus tard encore, une approche similaire a permis à Antoine Chambert-Loir et Yuri Tschinkel de traiter le cas des compactifications équivariantes d’espaces vectoriels sur un corps de nombres.
Ces dix dernières années, une version motivique additive de ces outils et résultats pour les compactifications d’espaces vectoriel a été développée successivement par Antoine Chambert-Loir et François Loeser puis Margaret Bilu, ce qui a servi de base à la formulation d’un principe de Manin-Peyre dans une version motivique.
L’objet de cet exposé est le fruit d'un travail en collaboration avec Margaret Bilu dans lequel nous développons une version motivique multiplicative de cette approche, laquelle nous permet de démontrer un phénomène de stabilisation motivique dans l’espace de module des morphismes d’une courbe lisse projective complexe quelconque vers une variété torique.
Une singularité de dimension d est quasi-ordinaire par rapport à une projection finie X -----> C^d si le discriminant de la projection est un diviseur à croisements normaux. Les singularités quasi-ordinaires sont au cœur de l'approche de Jung de la résolution des singularités en caractéristique zéro. En caractéristiques positives, elles ne sont pas très utiles du point de vue de la résolution des singularités, le problème de leurs résolutions étant presque aussi compliqué que le problème de résolution des singularités en général. En utilisant une version pondérée du polyèdre caractéristique de Hironaka (ou tout simplement la géométrie des équations) et des plongements successifs dans des espaces affines de "grandes" dimensions, nous introduisons la notion de singularités Teissier qui coïncide avec les singularités quasi-ordinaires en caractéristiques zéro, mais qui en est différente en caractéristiques positives. Nous démontrons qu'une singularité Teissier définie sur un corps de caractéristique positive est la fibre spéciale d'une famille équisingulière sur une courbe de caractéristique mixte dont la fibre générique (en caractéristique zéro donc) a des singularités quasi-ordinaires. Ici, L'équisingularité de la famille correspond à l'existence d'une résolution plongée simultanée.
Travail en collaboration avec Bernd Schober.
La systole d'une surface hyperbolique est la longueur de la géodésique fermée la plus courte sur la surface. Déterminer la systole maximale possible d'une surface hyperbolique d'une topologie donnée est une question classique en géométrie hyperbolique. Je vais parler d'un travail commun avec Mingkun Liu sur la question de ce que les constructions aléatoires peuvent apporter à ce problème d'optimisation.
Consider a sparse system of n Laurent polynomials in n variables with complex coefficients and support in a finite lattice set A. The maximal number of isolated roots of the system in the complex n-torus is known to be the normalized volume of the convex hull of A (the BKK bound). Together with Frédéric Bihan and Jens Forsgård, we explore the following question: if the cardinality of A equals n+m+1, what is the maximum local intersection multiplicity at one point in the torus in terms of n and m? This study was initiated by Gabrielov in the multivariate case. We give an upper bound based on the computation of covolumes that is always sharp when m=1 and, under a generic technical hypothesis, it is considerably smaller for any dimension n and codimension m. We also present, for any value of n and m, a particular sparse system with high local multiplicity with exponents in the vertices of a cyclic polytope and we explain the rationale of our choice. Our work raises several interesting questions.
Deux groupes sont dits élémentairement équivalents s'ils satisfont les mêmes énoncés du premier ordre (c'est-à-dire les mêmes énoncés mathématiques où les symboles de variables ne désignent que des éléments du groupe considéré). Dans mon exposé, j'expliquerai que la propriété d'être un groupe hyperbolique au sens de Gromov est préservée par équivalence élémentaire au sein des groupes de type fini. Ce résultat est motivé par une question posée par Tarski dans les années 1940 au sujet de l'équivalence élémentaire des groupes libres non abéliens.
La ressemblance frappante entre le comportement des corps pseudo algébriquement clos, pseudo réels clos et pseudo p-adiquement clos a conduit à de nombreuses tentatives pour décrire leurs propriétés d'une manière unifiée. Dans cet exposé, je présenterai une nouvelle de ces tentatives : la classe des corps pseudo T-clos, où T est une théorie enrichie de corps. Ces corps vérifient un principe « local-global » pour l'existence de points sur les variétés, en lien avec les modèles de T. Bien qu'elle ressemble à des tentatives précédentes, notre approche est plus modèle théorique, à la fois dans sa présentation et dans les résultats visés.
Le premier résultat que j'aimerais présenter est un résultat d'approximation, généralisant un résultat de Kollar pour les corps PAC, respectivement Johnson pour les corps henséliens. Le second résultat est un résultat de classification (modèle théorique) des corps parfaits bornés pseudo T-clos, par le biais du calcul de leur fardeau. Une des conséquences de ces deux résultats est qu'un corps PAC parfait borné avec n valuations indépendantes est de fardeau n et, en particulier, est NTP2.
J'estimerai la croissance asymptotique de l'espérance mathématique de l'aire des amibes des courbes planes complexes aléatoires. Cela nécessitera, étant donnée une collection de bi-disques de taille inverse à la racine carrée du degré, de minorer la probabilité que l'un de ces bi-disques soit une carte de sous-variété d'une courbe plane. Il s'agit d'un travail en collaboration avec Ali Ulaş Özgür Kişisel.
In 2020, Parusinski and Rond proved that every algebraic set $V \subset \mathbb{R}^n$ is homeomorphic to a $\bar{\mathbb{Q}}^r$-algebraic set $V' \subset \mathbb{R}^n$, where $\bar{\mathbb{Q}}^r$ denotes the field of real algebraic numbers. Latter very general result motivates the following open problem: $\mathbb{Q}$-algebraicity problem: (Parusinski, 2021) Is every algebraic set $V \subset \mathbb{R}^n$ homeomorphic to some $\mathbb{Q}$-algebraic set $V' \subset \mathbb{R}^m$, with $m \ge n$? The aim of the talk is to introduce above open problem and to explain how our new approximation techniques over $\mathbb{Q}$ allowed us to provide some classes of real algebraic sets that positively answer the $\mathbb{Q}$-algebraicity problem.
Toute courbe complexe plane est munie d’une métrique riemannienne induite par la métrique ambiante de Fubini- Study du plan projectif complexe. Nous donnons des bornes inférieures probabilistes sur certaines quantités métriques et spectrales (telles que la systole ou le trou spectral) des courbes planes lorsque celles-ci sont choisies aléatoirement. Il s’agit d’un travail commun avec Damien Gayet.
Nous montrons comment la théorie de la classification locale des systèmes dynamiques analytiques discrets en une variable peut s'étendre au cadre formel des transséries et de certains germes transsériels. Ces résultats s'étendent également à certains corps de "transséries généralisées" contenus dans le corps des nombres surréels, en s'appuyant sur des considérations inspirées des travaux de Rosenlicht sur les corps de Hardy. Travail joint avec V. Mantova, D. Peran et T. Servi.
Si X est une variété algébrique sur un corps non archimédien complet, son analytifié à la Berkovich $X^{an}$ contient de nombreuses parties, les squelettes, ayant une structure naturelle d’espace linéaire par morceaux. Si X est intègre, si S est un squelette de $X^{an}$ et si f est une fonction rationnelle non nulle sur X, log |f| est bien définie sur S et sa restriction à S est linéaire par morceaux. Que dire de l’ensemble E des fonctions PL sur S obtenues de cette façon ? Je présenterai dans cet exposé un résultat issu d’un travail en commun avec E. Hrushovski et F. Loeser, qui assure que E est un groupe stable sous min et max, et est de type fini modulo les constantes pour les opérations (+,-, min, max).
À venir
En 1927 Artin a résolu le 17ème problème de Hilbert en montrant qu'un polynôme positif sur $\mathbb{R}^n$ est somme de carrés de fonctions rationnelles. Ce résultat marque le début du développement de l'algèbre réelle. Dans cet exposé on s'intéresse à la réciproque du 17ème problème de Hilbert dans un cadre général. Soit $A$ un anneau intègre de corps des fractions $K$, on va décrire les lieux où la positivité des éléments de $A$ est équivalente à être une somme de carrés dans $K$. Lorsque $A$ est l'anneau de coordonnées d'une variété algébrique réelle irréductible affine $V$, ces lieux sont fortement liés aux singularités de $V$. Il s'agit d'un travail en commun avec Goulwen Fichou et Ronan Quarez.
Logarithmic-analytic functions are iterated compositions (from either side) of globally subanalytic functions (i.e. functions definable in the o-minimal structure $\R_{an}$ of restricted analytic functions) and the global logarithm. Their definition is kind of hybrid. From the viewpoint of logic, log-analytic functions are definable in the o-minimal expansion $\R_{an,exp}$ of $\R_{an}$ by the global exponential function; in fact they generate the whole structure $\R_{an,exp}$. But from the point of analysis their definition avoids the exponential function and should therefore also not exhibit properties of the function $\exp(−1/x)$ as flatness or infinite differentiability but not real analyticity. This seems to be obvious. But the problem is that a composition of globally subanaytic functions and the logarithm allows a representation by ’nice’ terms only piecewise. Moreover, the ’pieces’ are in general not definable in $\R_{an}$ but only in $\R_{an,exp}$. And the existing preparation results for log-analytic functions involve functions which are not log-analytic. But by elaborating on the preparation theorems one can identify situations where the preparation can be carried out inside the log-analytic category. And these situations are sufficient to obtain the following results: We show that the derivative of a log-analytic function is log-analytic. We prove that log-analytic functions exhibit strong quasianalytic properties. We establish the parametric version of Tamm’s theorem for log-analytic functions. It seems also to be obvious that log-analytic functions are polynomially bounded. This is indeed true in the univariate case. But, surprisingly, multivariate log-analytic functions can exhibit exponential growth. We give examples and present structural results on the growth.
Je vais montrer les caractères topologiques d'une variété complexe projective qui déterminent le degré de la variété duale.
Ce sont des caractéristiques d’Euler-Poincaré associées à la stratification de Whitney minimale de la variété.
Tous les termes utilisés seront expliqués.
Étant donné deux fonctions réelles $f$ et $g$, qui engendrent deux structures o-minimales, respectivement $M(f)$ et $M(g)$, on dira que $f$ est définissable à partir de $g$ si le graphe de $f$ appartient à $M(g)$. On peut considérer la non-interdéfinissabilité de deux fonctions o-minimales $f$ et $g$ comme une sorte d'indépendance fonctionnelle, qui généralise celle différentielle-algébrique. La motivation initiale de ce travail est la question suivante : soient $f$ la restriction à la demi-droite réelle ${ x: x>1}$ de la fonction $\zeta$ de Riemann et $g$ la restriction à la demi-droite réelle positive de la fonction Gamma d'Euler (deux fonctions o-minimales). Est-ce que $f$ est définissable à partir de $g$ ? Pour répondre (négativement) à cette question (et à d'autres questions dans le même esprit), nous montrons que l'on peut plonger le corps des germes de fonctions définissables dans une structure o-minimale $M$ engendrée par une classe quasi-analytique généralisée, dans un corps de séries logarithmico-exponentielles, et que l'image $F$ d'un germe $f$ par ce plongement est un développement trans-asymptotique de $f$ dans une échelle asymptotique appropriée. En étudiant les propriétés de tels objets formels $F$ (support, coefficients, convergence...) on peut déduire que certains germes réels ne sont pas définissables dans la structure $M$. (travail en cours avec J.-P. Rolin et P. Speissegger).