Némethi and Veys proved a generalized monodromy conjecture using the technique of splicing. They considered a topological zeta function with respect to a differential form and included this information into the splice diagram. This splice diagram is essentially a decorated dual graph of an embedded resolution and splicing is operation on these splice diagrams. It splits such a graph into two parts and their topological zeta functions are related by a splicing formula. An interesting question is then what happens if we look at more general zeta functions such as the motivic zeta function and the monodromic motivic zeta functions. I will illustrate these (splice) diagrams using easy examples and give another proof of the splicing formula. The advantage of this proof is that it also is valid for these other zeta functions. However I will also discuss some problems arising from considering these other zeta functions.