On étudie les complexifications topologiquement minimales du plan affine euclidien R² à isomorphisme près et à difféomorphismes birationnels près. Un faux plans réel est une surface géométriquement intègre non singulière définie sur R telle que : • Le lieu réel S(R) est difféomorphe à R²; • La surface complexe S_C(C) a le type d’homologie rationnelle de A²_C(C).; • S n’est pas isomorphe à A²_R en tant que surface définie sur R. L’étude analogue dans le cas compact, c’est-à-dire la classification des complexifications du plan projectif réel P²(R) possédant l’homologie rationnelle du plan projectif complexe est bien connue : P²_C est l’unique telle complexification. Nous prouvons que les faux plans réels existent en donnant plusieurs exemples et nous abordons la question : existe-t-il un faux plan réel S tel que S(R) n’est pas birationnellement difféomorphe à A²_R(R) ? (Travail en commun avec Adrien Dubouloz.) Deux articles à ce sujet : http://arxiv.org/abs/1507.01574 (soumis) et ``Real frontiers of fake planes'', European Journal of Math, DOI 10.1007/s40879-015-0087-8 (2015).