La migration cellulaire joue un rôle fondamental dans bien des processus physiologiques, tels que l'embryogenèse, la cicatrisation, ou encore la formation de métastases. Or, le comportement migratoire d'une cellule est le résultat d'une activité complexe intégrée sur différentes échelles spatiales et temporelles, rendant sa compréhension difficile. Nous nous intéressons ici à la reptation de cellules placées sur une surface adhésive plane. Dans un premier temps, je présenterai un modèle stochastique sans géométrie, où le mouvement d'une cellule ponctuelle se base sur une activité cellulaire observable et dénombrable. Les simulations numériques produisent des trajectoires réalistes pour différents systèmes expérimentaux. Du point de vue théorique, il est possible d'en déduire une caractérisation analytique de différents comportements migratoires par une équation de Fokker-Planck, montrant ainsi la richesse du modèle. Dans un second temps, je présenterai un modèle déterministe de migration où la géométrie est prise en compte, permettant de faire le lien avec un régulateur moléculaire de la migration. Nous verrons que ce travail, s'approchant d'un modèle minimal de migration multi-échelles, porte également des perspectives riches, comme la modélisation du mouvement collectif d'une population de cellules en interaction.