On montre que toute famille de singularités analytiques, réelles ou complexes, équisingulière au sens de Zariski, peut être trivialisée par un homeomorphisme semi-algébrique, arc-analytique, et analytique par rapport au paramètre. Cela montre en particulier la conjecture de fibration de Whitney : l’existence, pour toute variété analytique complexe, d’une stratification qui possède localement un feuilletage (w)-régulier. Une telle stratification peut être construite de manière algorithmique. (travail en collaboration avec Laurentiu Paunescu)