Recurrence relations have been of interest since ancient times. Perhaps the most famous is the Fibonacci numbers, where each additional term in the sequence is obtained as the sum of the previous two. I will show how we can use a graphical language of string diagrams–a “graphical linear algebra”–to reason about recurrence relations, and as a bonus, obtain efficient implementations. This application comes from a general string diagrammatic theory of signal flow graphs–a model of computation originally studied by Claude Shannon in the 1940s–developed in collaboration with Filippo Bonchi and Fabio Zanasi, and published at CONCUR 2014 and PoPL 2015.