Équations d'agrégation avec potentiel peu régulier : analyse et approximation.


Frédéric Lagoutière, ICJ -- Univ Lyon1. 6 octobre 2017 14:00 edp
Abstract:

Je présenterai quelques résultats que j'ai obtenus récemment en collaboration avec José Antonio Carrillo, François Delarue, François James et Nicolas Vauchelet. Ils concernent des équations d'agrégation, qui sont des équations de transport, conservatives, où le champ de transport est obtenu par convolution de la solution elle-même (l'équation étant donc non linéaire) par le gradient d'un potentiel qui peut n'être pas régulier. Ceci a pour conséquence que le champ de vitesse présente des discontinuités en espace. Nous verrons que les problèmes de Cauchy associés à ce type d'équations sont bien posés, en un sens proposé par Poupaud et Rascle, en se basant sur la théorie des EDO de Filippov. Nous verrons ensuite que ces solutions, non régulières (mesures bornées), s'approchent bien (à l'ordre 1/2 en le pas du maillage) par des schémas diffusifs (du genre décentré amont), en distance de Wasserstein.