Mesure de transcendance et distributions des valeurs des fonctions méromorphes


Pierre Villemot, LAMA. 30 novembre 2017 14:00 geo
Abstract:

Afin d'étudier les propriétés arithmétiques d'une fonction entière, Coman et Poletsky ont introduit une notion de mesure de transcendance. Cette mesure joue un rôle similaire aux mesures de transcendances en approximation diophantienne. Par la suite ils ont obtenu une majoration de cette mesure de transcendance sous des conditions de distribution des petites valeurs de la fonction entière étudiée. J'expliquerai comment cette mesure de transcendance peut être étendue aux fonctions méromorphes sur le disque unité ou le plan. De façon analogue à la situation entière, il sera possible de majorer cette mesure sous des conditions de distribution des petites valeurs de la fonction méromorphe et des pôles de celle-ci. J'appliquerai ce résultat au cas des fonctions elliptiques et fuchsiennes. Enfin j'expliquerai le lien entre les lemmes de zéros et les mesures de transcendances de cet exposé.