Produit de filtrations par le poids équivariantes réelles


Fabien Priziac, Institut de Mathématiques de Marseille. 18 janvier 2018 16:00 geo
Abstract:

En utilisant le travail de Guillén et Navarro Aznar sur les hyperrésolutions cubiques, Totaro a introduit un analogue de la filtration par le poids de Deligne sur l'homologie et la cohomologie des variétés algébriques réelles, fonctorielle, triviale sur les variétés lisses compactes, additive et compatible avec les résolutions des singularités. McCrory et Parusinski ont montré que la filtration par le poids réelle homologique et ses propriétés étaient induites par un complexe de chaînes filtré géométrique, appelé filtration géométrique. Un article avec Limoges montre également que le dual de ce dernier induit la filtration par le poids réelle cohomologique, et que ces filtrations géométriques induisent la compatibilité des filtrations par le poids réelles avec les produits usuels (cartésiens, cup, cap). Si l'on considère maintenant des variétés algébriques réelles munies de l'action d'un groupe fini, la fonctorialité des filtrations géométriques permet d'induire une filtration par le poids sur des homologie et cohomologie équivariantes, définies par van Hamel pour vérifier une dualité de Poincaré sur les variétés topologiques avec action. Des différences significatives apparaissent cependant entre les filtrations par le poids réelles équivariantes et non-équivariantes. Dans cet exposé, on verra comment la fonctorialité des complexes filtrés géométriques induit néanmoins la compatibilité des filtrations par le poids équivariantes réelles avec les produits cartésiens, cup et cap équivariants, ainsi qu'avec le morphisme de dualité de Poincaré équivariant.