Réécriture de dimension supérieur et catégories cubiques


Maxime Lucas, Nantes. 29 mars 2018 09:00 limd
Abstract:

La réécriture de dimension supérieure a pour origine des travaux de Squier sur le problème du mot dans les monoïdes. A partir d'une présentation d'un monoïde, Squier a pu calculer en basse dimension des invariants homotopiques de ce monoïde. Depuis, elle a été adaptée à d'autres structures, et en particulier aux PRO, où elle permet de prouver des théorèmes de cohérence comme celui de MacLane pour les catégories monoïdales. Par ailleurs, dans le cas des monoïdes, les constructions de réécriture ont été étendues en dimension supérieure. Au cours de cet exposé, je montrerai comment il est possible d'unifier ces théories de réécriture dans diverses structures. En particulier, ceci permet de réinterpréter les constructions effectuées en réécriture en termes homotopiques. Cette réinterprétation s'appuie en particulier sur la notion de omega-catégorie cubique et sur le produit de Gray.