Les surfaces elliptiques propres réelles, c’est-à-dire les surfaces dont la dimension de Kodaira est égale à 1, constituent la seule classe de surfaces algébriques réelles de type spécial dont la classification topologique n’est pas achevée.
Quand le nombre de Hodge h0,1(X) est nul, c’est-à-dire que la surface elliptique X est régulière, nous donnons une réponse complète à la question des valeurs possibles des nombres de Betti de la partie réelle, pour chaque famille complexe. En particulier, nous retrouvons les réponses bien connues à cette question dans le cas des surfaces elliptiques rationnelles et les surfaces K3 elliptiques.