La propagation des vagues dans les zones côtières implique des mécanismes complexes, représentant des enjeux de modélisation et numériques considérables. Si la plupart des processus non-linéaires sont généralement capturés par des modèles de type Boussinesq, ces équations conservent l’énergie et sont donc intrinsèquement inaptes à décrire les mécanismes dissipatifs, tels que ceux associés au déferlement des vagues par exemple. Pour gérer ce phénomène, nous introduisons un nouveau modèle dispersif fortement non-linéaire capable de prendre en compte les effets turbulents sous-jacents. L’approche est caractérisée par la présence d’une nouvelle variable basée sur la variation verticale de la vitesse, appelée enstrophie, modélisant l’énergie turbulente. Le modèle proposé partage une structure similaire aux équa- tions de Green-Naghdi et peut donc être intégré sur la base de tout modèle numérique existant pour ces équations. Dans le prolongement de travaux récents, nous considérons un discrétisation type Galerkin discontinue du système, basée sur un découplage entre les parties hyperboliques et non- hydrostatiques. Des validations numériques 1d et 2d impliquant la propa- gation de vagues déferlantes sur topographies non triviales sont proposées. En particulier, les comparaisons avec les données expérimentales confirment l’efficacité de la stratégie, mettant en évidence l’enstrophie comme un outil robuste et fiable pour la détection et la description des vagues déferlantes, même dans un cadre bidimensionnel.