Valeurs algébriques exceptionnelles des E-fonctions


Tanguy Rivoal, Institut Fourier, Grenoble. 14 mars 2019 14:00 geo
Abstract:

Les E-fonctions sont des séries entières à coefficients de Taylor algébriques à l'origine (vérifiant certaines conditions de croissance) et solutions d'équations différentielles linéaires à coefficients polynomiaux. Siegel les a introduites en 1929 dans le but de généraliser les propriétés diophantiennes de la fonction exponentielle, qui prend une valeur transcendante en n'importe quel point algébrique non-nul. La situation est plus compliquée en général car une E-fonction peut parfois prendre une valeur algébrique quand elle est évaluée en un point algébrique non-nul. Dans cet exposé, je commencerai par présenter plusieurs résultats diophantiens classiques sur les E-fonctions (Siegel-Shidlovskii, André, Beukers). Puis je présenterai un algorithme qui, étant donnée une E-fonction f(z) en entrée, produit la liste finie des nombres algébriques A tels que f(A) soit également algébrique. C'est un travail en commun avec Boris Adamczewski (CNRS et Université Lyon 1).