The μ-calculus with atoms, or nominal μ-calculus, is a temporal logic for reasoning about transition systems that operate on data atoms coming from an infinite domain and comparable only for equality. It is, however, not expressive enough to define some properties that are of interest from the perspective of system verification. To rectify this, we extend the calculus with tests for atom freshness with respect to the global history of transitions. Since global histories can grow arbitrarily large, it is not clear whether model checking for the extended calculus is decidable. We prove that it is, by showing that one can restrict attention only to locally relevant parts of the history.