On étudie la version réelle suivante d'un théorème célèbre d'Abhyankar-Moh : quelles applications rationnelles de la droite affine dans le plan affine, dont le lieu réel est un plongement fermé non singulier de R dans R^2, sont équivalentes, à difféomorphisme birationnel du plan près, au plongement trivial ? Dans ce cadre, on montre qu’il existe des plongements non équivalents. Certains d’entre eux sont détectés pas la non-négativité de la dimension de Kodaira réelle du complémentaire de leur image. Ce nouvel invariant est dérivé des propriétés topologiques de « faux plans réels » particuliers associés à ces plongements. (Travail en commun avec Adrien Dubouloz.)