Je présente un travail récent en commun avec A. Aizenbud, continuant le travail avec Halupczok, Loeser et Raibaut sur les distributions p-adiques et motiviques. J'explique notre réponse à une question posée par Drinfeld et Aizenbud. Celle-ci utilise la résolution de singularités, la théorie de modèles, l'intégration motivique (et p-adique, uniforme en p) et la transformation de Fourier. J'explique les questions ouvertes pour généraliser tout ceci vers un cadre motivique au lieu de p-adique.