Dans le contexte de la géométrie discrète et du traitement d'image, la grille hexagonale est souvent considérée intéressante, mais difficile à représenter et à utiliser. Par conséquent, cette grille est moins populaire. Dans cet exposé, je passerai en revue le concept de la grille hexagonale dans le contexte de deux applications. La première est liée aux déplacements rigides discrets définis sur des grilles régulières et à la préservation de l'information sous une telle transformation. En effet, en général, les discrétisations de déplacements rigides ne sont pas bijectives. Néanmoins, certaines sont bijectives, et je vais discuter la caractérisation des rotations discrètes qui sont bijectives sur la grille hexagonale. En fin, je vais comparer les distributions des angles dont les rotations discrétisées sont bijectives dans les grilles hexagonale et carrée. Dans la deuxième partie de mon exposé, je me concentrerai sur les utilisations de la grille hexagonale dans l'architecture et la conception de bâtiments. Depuis un certain temps, on savait que les structures construites à partir de panneaux hexagonaux planaires, sont meilleures que les structures triangulaires en termes de stabilité structurelle et de répartition des contraintes physiques. Dans les structures triangulaires, de telles contraintes (par exemple causées par des chutes de neige) s'accumulent aux sommets. Au contraire, dans le cas des structures hexagonales, ces contraintes sont uniformément réparties sur la structure et transmises par les arêtes. Malheureusement, la conception de maillages hexagonaux planaires est un problème très difficile. Dans cet exposé, je vais passer en revue le problème de la conception de tels maillages hexagonaux planaires et décrire un processus automatique pour le remaillage de maillages triangulaires en maillages hexagonaux planaires.