Periodicity and finiteness in number systems with algebraic base


Tomáš Vavra, University of Waterloo. 24 juin 2021 10:00 limd
Abstract:

Abstract: We study periodic expansions in positional number systems. In particular, for a complex number $alpha$ we prove that there exists a finite set $D$ such that every element of $mathbb Q(alpha)$ can be represented by an eventually periodic expansion with the base $alpha$ and digits in $D$. Through a connection with the so-called spectra of numbers we will be also able to decide whether the expansion are finite on the ring $mathbb Z[alpha]$. As an application of these results, we will show that we can classify totally complex quartic fields whose integers can be expressed as sums of distinct units.