La théorie des types de Martin-Löf compte parmi les instances les plus abouties de la correspondance preuves-programmes : les types dépendants et les types inductifs permettent de spécifier des propriétés complexes aux programmes, et la hiérarchie d'univers fournit une puissance logique suffisante pour encoder l'essentiel des constructions mathématiques -- ce qui en fait un outil de choix pour les assistants de preuves! Toutefois, l'égalité inductive fournie par la théorie n'est pas très adaptée au raisonnement mathématique, car elle encode l'égalité des programmes (intensionnalité'') et non l'égalité des comportements (
extensionnalité''). Cela implique des conséquences désagréables : il est impossible de prouver que les fonctions qui à n associent respectivement n+2 et 2+n sont égales, il est impossible de quotienter un type par une relation, etc. C'est précisément pour remédier à ça qu'a été développée l'idée de théorie des types observationnelle, qui fournirait ces principes d'extensionnalité souhaitables, tout en préservant la correspondance preuves-programmes et les propriétés qui en font un outil si pratique (normalisation, canonicité, décidabilité du typage…). Dans cet exposé, je présenterai TT^obs, une altération conceptuellement simple de la théorie de Martin-Löf qui en fait une théorie observationnelle complète, je montrerai quelques exemples d'utilisation, et j'ébaucherai sa méta-théorie si le temps le permet.