On considère une approximation de type film mince du problème de Muskat qui décrit l'évolution spatio-temporelle des hauteurs de deux fluides superposés ayant des densités et des viscosités différentes et subissant l'influence de la gravité. La dynamique est décrite par un système de deux équations aux dérivées partielles paraboliques dégénérées d'ordre deux dont la matrice de diffusion n'a pas d'élément identiquement nul (diffusion croisée). D'une part, on obtient l'existence de solutions faibles bornées pour le problème de Neumann dans un ouvert borné. D'autre part, pour le problème de Cauchy, on classifie les solutions autosimilaires et on étudie leur stabilité. Ces résultats ont été obtenus en collaboration avec Ahmed Ait Hammou Oulhaj, Clément Cancès (Lille), Claire Chainais-Hillairet (Lille), Joachim Escher (Hannover) et Bogdan-Vasile Matioc (Regensburg).