By clustering the polar curves of 2-variable function germs, in the Topological category, one may derive a bijective correspondence of a certain partition of polar quotients. In the case of the Lipschitz category, we explain how this bijective correspondence may be refined in terms of the gradient canyons. We will show how the tracking of the contact orders of the polar arcs and of the roots of a holomorphic 2-variable germ, induces a natural partition of the set of polar arcs into clusters, in such a way that the classical bijective correspondence of branches of topologically right-equivalent function germs induces a bijective correspondence of those clusters. (Clustering polar curves, Topology and its Applications 313 (2022) with P. Migus and M. Tibar.)