Variétés bihamiltoniennes emboîtées.


Patrick Cabau, Tunis. 16 avril 2004 11:15 geo 2:00:00
Abstract:

Les variétés bihamiltoniennes de dimension paire, i.e. munies d’un couple de tenseurs de Poisson compatibles dont le premier est de rang maximum, fournissent un cadre adapté à une caractérisation géométrique de systèmes hamiltoniens intégrables.
On généralise ici cette situation et l’on se place sur des variétés de dimensions finies quelconques sur lesquelles le premier tenseur de Poisson présente des singularités de rang et où le second a un espace caractéristique contenu dans l’espace caractéristique du premier (cadre des variétés bihamiltoniennes emboîtées).
On étudie alors certaines propriétés géométriques de telles variétés en fonction du spectre de l’opérateur de récursion lié aux deux structures.