Algebraicity of global real analytic hypersurfaces


K. Kurdyka, LAMA. 10 mars 2006 10:00 geo 2:00:00
Abstract:

Let X be an algebraic manifold without compact component and let V be a compact coherent analytic hypersurface in X, with finite singular set. We prove that V is diffeotopic (in X) to an algebraic hypersurface in X if and only if the homology class represented by V is algebraic and singularities are locally analytically equivalent to Nash singularities. This allows us to construct algebraic hypersurfaces in X with prescribed Nash singularities. Joint work with Wojciech Kucharz.