Le contrôle quantique, c'est-à-dire le contrôle de processus physico-chimiques par laser, a connu de nombreux développements - tant théoriques qu'expérimentaux - au cours de la dernière décennie. Parallèlement à l'expérimentation, la simulation numérique a contribué de manière significative à la conception de champs lasers efficaces. Nous présentons ici une classe d'algorithmes d'optimisation associée aux fonctionnelles de coût rencontrées en chimie quantique, les schémas monotones. Basés sur des résolutions itératives de l'équation de Schrödinger, ces algorithmes ont la particularité de faire croître de manière monotone les fonctionnelles considérées. D'un point de vue numérique, une discrétisation en temps adaptée a été conçue de manière à préserver cette propriété au niveau du schéma de calcul. La convergence de la suite des champs de contrôle Laser ainsi obtenue est prouvée en utilisant l'inégalité de Lojasiewicz. Enfin, nous présentons une méthode de parallélisation en temps de ces schémas qui permet, lors de premiers tests numériques, de diminuer d'un ordre de grandeur le coût computationnel de l'optimisation, sans pour autant modifier le champs laser limite.