Approximation des géodésiques


Boris Thibert, LJK - Grenoble. 29 juin 2007 10:15 geo 2:00:00
Abstract:

Nous nous intéressons dans cet exposé au problème suivant : nous considérons une triangulation T_n qui converge au sens de Hausdorff et en normales vers une surface S régulière de classe C^2. Sur chaque triangulation T_n nous considérons une courbe géodésique C_n qui converge vers une courbe C de S. Il est alors naturel de se demander si C est une géodésique de S. Dans le cas où C_n est un plus court chemin, il est connu que C est aussi un plus court chemin. Nous allons montrer que ce résultat ne tient plus si l'on suppose que C_n est une géodésique sans être un plus court chemin. Cependant, en faisant des hypothèses supplémentaires sur la vitesse de convergence des normales et sur les longueurs des arêtes, il est possible de garantir que la courbe limite C est une géodésique. Ce travail peut ensuite s'appliquer à certains schémas de subdivision. Il permet ainsi de valider un algorithme existant de V. Pham-Trong et al. en 2001, qui permet de calculer des géodésiques (qui ne sont pas forcément des plus court chemins) sur une suite de surfaces de subdivision.