Dans cet exposé, je présenterai une extension du lambda-calcul dans laquelle le filtrage s'effectue à l'aide d'une construction "case" (analyse par cas au sens du langage Pascal) se propageant à travers les fonctions comme une substitution linéaire de tête. Je montrerai en particulier que cette présentation du filtrage permet de récupérer toute l'expressivité du filtrage à la ML (avec des constructeurs non constants) et même plus. Ensuite, je présenterai la preuve du théorème de Church-Rosser, basée sur une technique inédite de "divide and conquer" dans laquelle on détermine de manière semi-automatique l'ensemble des paires de sous-systèmes qui commutent (en considérant toutes les combinaisons possibles des 9 règles de réduction primitives). Enfin, je montrerai que le calcul vérifie une propriété de séparation (non typée) dans l'esprit du théorème de Böhm.