La mécanique classique nous parvient des équations différentielles sous la forme : $\frac{dX}{dt}=f(X)$, $t\in \mathbb{R}$, $X\in \mathbb R^n$. Normalement, il y a très peu choses qu’on sait dire sur la dynamique globale des solutions $X(t)$ vues comme des courbes réelles dans $\mathbb{R}^n$. L’étude s’enrichit beaucoup quand on complexifie le problème i.e considère $t\in \mathbb{C}$, $X\in \mathbb C^n$. L’approche de Ziglin (1980’s) réduit alors l’analyse des propriétés dynamiques (l’intégrabilité, la stabilité etc.) à l’étude purement algébrique des sous-groupes de $\mathrm{GL}(n,\mathbb{C})$ qui apparaissent comme des groupes de monodromie des équations aux variations autour d’une solution particulière. Dans cette exposé je présente des résultats récents dans cette direction relatives aux problèmes classiques da la mécanique : le problème des trois corps, le Rattleback et le Levitron (une toupie flottant dans le champ magnétique). Quelques démonstrations sont prévues. Références [1] A. Tsygvintsev, On some exceptional cases in the integrability of the three-body problem, Celestial Mechanics and Dynamical Astronomy, Vol. 99, No. 1, 237-247, 2007 [2] H. Dullin, A. Tsygvintsev, On the analytic non-integrability of the Rattleback problem, Annales de la faculté des sciences de Toulouse, à paraître