La question de l'existence de certaines surfaces quartique de P^3(R) a été posée par Hilbert dans la première partie de son 16° problème. En 1975, Kharlamov a montré l'existence de ces surfaces quartiques de P^3(R) par une méthode non constructive. En 1979, Viro a montré comment, en partant de courbes sur l'hyperboloïde, on pouvait prouver directement l'existence des surfaces quartiques P^3(R) considérées. Mais Viro ne détaille pas la construction de toutes les courbes utilisées. Dans cet exposé, on construira explicitement les courbes réelles de genre 9 avec 10 composantes connexes nécessaires et on appliquera ce résultat aux surfaces quartiques.