A computational framework integrating cytoskeletal and adhesion dynamics for modeling cell motility


Angelique Stephanou, CR CNRS, Grenoble. 16 janvier 2009 15:00 edp 2:00:00
Abstract:

Cell migration is a highly integrated process where actin turnover, actomyosin contractility, and adhesion dynamics are all closely interlinked. The computational framework presented here aims to investigate the coupling between these fundamental processes. Two different applications of the model have been considered. First its relevance to describe cell migration and second its ability to predict the cell morphologies as observed on patterned substrata. In the model the cell membrane oscillations originating from the interaction between passive hydrostatic pressure and contractility are sufficient to lead to the formation of adhesion spots. Cell contractility then leads to the maturation of these adhesion spots into focal adhesions through integrins recruitment, which reciprocally stimulates reinforcement of the stress fibres. Due to active actin polymerization, which enhance protrusion at the leading edge, the traction force required for cell translocation can be generated. However, if the force is not strong enough, the maturation of the stress fibres allows to redistribute the forces throughout the cytoskeleton and the cell can thus recover a new stable shape. Numerical simulations first performed in the context of unstimulated cell migration, i.e. for a homogeneous and isotropic substratum, show that the model hypotheses are satisfactory to reproduce the main features of fibroblast cells migration as well as the well-known biphasic evolution of the cell migration speed as a function of the adhesion strength. In the context of patterned substrata, the numerical simulations allow to explain how the forces generated by the stress fibres of the virtual cells are regulated at the adhesion site through feedback mechanisms and how the competing stress fibres can generate an equilibrium state corresponding to a stable cell shape.