Les solutions stationnaires des équations aux dérivées partielles hamiltoniennes sont les points critiques du Hamiltonien. La stabilité de ces solutions est lié au nombre de valeurs propres la Hessienne du Hamiltonien. Il est possible de compter ces valeurs propres en utilisant un invariant topologique appelé indice de Maslov. Nous appliquons ce cadre de travail à certaines solutions stationnaires de l'équation de Korteweg de Vries avec forçage ainsi qu'aux ondes solitaires multi-modales de l'équation de Kawahara.