Dans cet exposé, je présenterai une famille de polyominos appelés doubles carrés, ayant la propriété de paver le plan par translation de deux façons distinctes. Rappelons qu'un polyomino est un sous-ensemble de la grille discrète qui est 4-connexe (connecté verticalement et horizontalement) et sans trou (c'est-à-dire que son complément est également 4-connexe). Nous pouvons en particulier coder son contour par un mot sur un alphabet à quatre lettres {h, b, g, d} codant les déplacements 'haut', 'bas', 'gauche' et 'droite'. J'introduirai d'abord les définitions de la combinatoire des mots nécessaires à cet exposé ainsi que les notions de polyominos et de pavages. Ensuite, je survolerai rapidement les résultats connus et certaines conjectures intéressantes. J'enchaînerai en présentant quelques propriétés sur les chemins liées à une généralisation de la notion de palindrome et je terminerai en présentant une famille de tuiles liées à la suite de Fibonacci. L'exposé se déroulera en québécois...