Parmi les nombreuses structures ordonnées liées aux espaces topologiques, les treillis continus occupent une place importante. Ils constituent par exemple les espaces topologiques de Kolmogorov injectifs. Nous nous proposons ici de présenter ces treillis d'un point de vue algébrique au travers de la notion de monade et d'adjonction de Galois. La définition originelle d'espace topologique donnée par Hausdorff en 1914 apparaît alors de façon naturelle, et nous permet de jeter un regard neuf sur le résultat d'injectivité mentionné ci-dessus.