We extend the well-known Serrin's blowup criterion for the three-dimensional incompressible Navier-Stokes equations to the 3D compressible Navier-Stokes equations with vacuum. In other words, in addition to Serrin's condition on the velocity, the L^1(0,T;L^{infty}) norm of the divergence of the velocity is also needed to control the possible breakdown of strong (or smooth) solutions for the three-dimensional compressible Navier-Stokes equations. Moreover, under some additional constraint on the viscosity coefficients, either the L^1(0,T;L^{infty}) norm of the divergence of the velocity or the upper bound of the density will be enough to guarantee the global existence of classical (or strong) solutions.``