Topologie des espaces de Berkovich


Antoine DUCROS, Jussieu. 21 janvier 2011 10:15 geo 2:00:00
Abstract:

Cet exposé supposera connues les définitions de base expliquées lors de l'exposé de la veille. J'expliquerai comment le théorème de réduction semi-stable (dont je rappellerai l'énoncé en détail) permet de décrire la topologie locale et globale des courbes de Berkovich, et notamment de relier leur type d'homotopie à leur réduction modulo p ; je dirai quelques mots sur la façon dont on peut procéder en sens contraire, c'est-à-dire déduire le théorème de réduction semi-stable d'une étude directe des courbes de Berkovich. Je passerai ensuite à la topologie des espaces de Berkovich associés à des variétés algébriques de dimension quelconque et à celle de leurs sous-ensembles semi-algébriques, que je définirai. Je présenterai les différents résultats qui ont été établis à ce jour à leur sujet (type d'homotopie, modération topologique...), depuis les articles de Berkovich dans les années 90, fondés sur des techniques très profondes de géométrie arithmétique (altérations de de Jong), jusqu'aux travaux très récents de Hrushovski et Loeser, qui reposent sur des outils avancés de théorie des modèles des corps valués.