Automates cellulaires linéaires et fractales


Vincent Nesme, University of Potsdam. 10 février 2011 10:03 limd 2:00:00
Abstract:

Tout le monde aime les automates cellulaires, tout le monde aime les fractales, et l'on sait bien que celles-ci peuvent être produits par ceux-là. Par exemple, le triangle de Sierpinski, comme il s'agit du triangle Pascal modulo 2, est le diagramme espace-temps limite d'un automate cellulaire correspondant à la relation C(n+1,k+1)=C(n,k)+C(n,k+1). Plus généralement, il est connu que si l'alphabet a une structure d'anneau commutatif et que l'automate cellulaire est un morphisme d'anneaux - on parle alors d'automate cellulaire linéaire - une structure fractale va émerger de ses diagrammes espace-temps. Remplaçons maintenant l'anneau par un simple groupe - non, pas un groupe simple, un simple groupe abélien fini. J'expliquerai pourquoi, à mon sens, c'est dans ce cas plus général qu'on devrait parler d'automate cellulaire linéaire, et non pas seulement dans le cas des anneaux comme on le fait habituellement ; et surtout, je tâcherai de faire comprendre pourquoi leurs diagrammes espace-temps ont aussi des propriétés fractales.