Théories homotopiques de champs quantiques, espaces classifiants et champs en groupoïdes


Tim Porter, WIMCS, University of Bangor. 27 octobre 2011 14:30 labo 2:00:00
Abstract:

Les théories homotopiques de champs quantiques (HQFTs) ont été introduites par V. Turaev. Ils sont une forme de QFT dans lesquelles les variétés ont des structures supplémentaires. Dans cet exposé, je vais passer rapidement en revue quelques bases de la théorie des modules croisés utile plus tard, et introduire les TQFTs et HQFTs avec un espace de but, B. Après classification des cas simples, nous allons examiner le cas dans lequel B est l'espace classifiant d'un module croisé. S'il y a assez de temps, nous aborderons quelques interprétations en forme de gerbes etc. Plan : 1. Motivation 2. Rappels et exemples (simples) des modules croisés. 3. Théories topologiques de champs quantiques (TTCQs = TQFTs); 4. Théories homotopiques de champs quantiques (THCQs = HQFTs); 5. Résultats de Classification: (i) B = K(pi; 1), (ii) B = K(A; 2); 6. Applications formelles et HQFTs formelles : résultats généraux; 7. C-algebras croisées; 8. Complexes croisés, groupes simpliciaux et espaces classifiants; 9. C-fonctions formelles simpliciales et FHCobord(d; C); 10. C-fibrés combinatoires : allant vers les Gerbes.