Algorithme de Metropolis


Gilles Lebeau, Laboratoire Dieudonné de Nice. 19 janvier 2012 14:00 labo
Abstract:

L'algorithme de Metropolis est un algorithme permettant de tirer un point au hasard pour une probabilité donnée. Il a été introduit en 1953 par N. Metropolis, A.-W. Rosenbluth, M.-N. Rosenbluth, A.-H. Teller, E. Teller, dans l'article '' Equations of State Calculations by Fast Computing Machines, Journal of Chemical Physics 21 (6) 1087--1092. Il a ensuite été généralisé en 1970 par W.-K. Hastings dans Monte Carlo Sampling Methods Using Markov Chains and Their Applications'', Biometrika 57 (1) 97?109. Cet algorithme, et ses variantes, est un des plus utilisés du calcul scientifique, voir par exempletop ten algorithms of the century'' sur google. Son étude mathématique est par contre très loin d'être achevée et pose des problèmes fort intéressants de géométrie, de théorie spectrale, d'analyse, et bien sur de probabilités. Dans cet exposé, je commencerai par introduire l'algorithme sous sa forme historique : Comment choisir N disques de rayon r (sans recouvrement ) au hasard dans un carré? et j'indiquerai quelques résultats et problèmes ouverts sur ce modèle. Dans une deuxième partie, je montrerai comment les plus simples des algorithmes de Metropolis, associés à des marches aléatoires à ``petits pas'', conduisent à l'étude d'opérateurs qui généralisent les opérateurs du calcul pseudodifférentiel semiclassique usuel.