La géométrie du spectre de Steklov


Alexandre Girouard, LAMA. 12 avril 2013 10:15 geo
Abstract:

La géométrie spectrale est une branche des mathématiques relativement jeune, et qui se développe très rapidement. Son âge d'or s'est amorcé, entre autre, sous l'influence de Marc Kac qui, en 1966, formula la célèbre question: ``Can one hear the shape of a drum?''. La géométrie spectrale étudie les liens entre la géométrie d'un espace et les valeurs propres d'un opérateur (Laplacien, Dirac, de Schrödinger, etc) agissant sur les fonctions de cet espace. Dans cet exposé, je me concentrerai sur le spectre de l'opérateur de Dirichlet-Neumann. Cet opérateur agit sur les fonctions du bord d'une variété Riemannienne. Son spectre est connu sous le nom de spectre de Steklov de la variété. Je m'attarderai principalement aux aspects isopérimétriques. Les résultats que je présenterai ont été obtenus en collaboration avec Iosif Polterovich, ainsi qu'avec Bruno Colbois et Ahmad El Soufi. Plusieurs de ces résultats semblent indiquer que le spectre de l'opérateur Dirichlet-Neumann est lié à la géométrie sous-jacente de manière similaire au spectre de l'opérateur de Laplace-Beltrami, mais nous verrons qu'il existe des exemples où ces liens sont tout à fait différents, et peut-être même surprenants.