Quelle structure algébrique généralise à la fois les ensembles ordonnés et les espaces métriques? La structure de catégorie enrichie dans une catégorie monoïdale $mathcal{V}$, comme l'a montré Lawvere [1973]. En effet, si on pose $(mathcal{V},otimes,I)=([0,infty]^{sf op},+,0)$, alors la théorie des $mathcal{V}$-catégories est celle des espaces métriques; et si on pose $(mathcal{V},otimes,I)=({0,1},wedge,1)$, alors la théorie des $mathcal{V}$-catégories est celle des ensembles ordonnés. Mais comment faire si on veut parler des {em ensembles ordonnés d'éléments locaux}, autrement dit, des ensembles ordonnés dont les éléments ne sont pas définis partout''? Ou, dans le même esprit, si on veut parler des {em espaces métriques partiels}, c'est à dire, des espaces métriques
dans lesquels la distance d'un point à lui-même n'est pas nécessairement zéro''? Je vais expliquer que, dans ces cas aussi, la structure recherchée est celle de catégorie enrichie---mais, cette fois, enrichie dans une bicatégorie $mathcal{W}$. De plus, pour les éléments locaux comme pour les métriques partiels, la bicatégorie $mathcal{W}$ en question est obtenue par une construction universelle sur une catégorie monoïdale $mathcal{V}$: c'est la {em la construction des diagonaux}. Donc, pour $(mathcal{V},otimes,I)=([0,infty]^{sf op},+,0)$, les $mathcal{V}$-catégories sont les espaces métriques; et pour $mathcal{W}=mathcal{D}(mathcal{V})$ (la bicatégorie des diagonaux dans $mathcal{V}$), les $mathcal{W}$-catégories sont les espaces métriques partiels. Mais bien sûr tout espace metrique ordinaire est un espace métrique partiel; et il est aussi vrai que tout espace métrique partiel détermine (au moins) un espace métrique ordinaire. Cette relation est entièrement expliquée par des {em changements de base}, c'est à dire des foncteurs particuliers, qui existent entre $mathcal{V}$ et $mathcal{W}$. Comme autre exemple de changement de base, je vais parler de l'ordre sous-jacent d'un espace métrique, et de l'espace métrique libre sur un ordre. Je vais par ailleurs indiquer comment, par le biais des changements de base, on peut formuler des questions pertinentes à propos de ces structures. Dans mon exposé, je vais éviter toute technicité (le seul prérequis étant la notion d'ensemble ordonné), car je veux surtout insister sur l'usage de bicatégories comme base d'enrichissement pour traiter spécifiquement les phénomènes décrits ci-dessus.