On s'intéresse au système d'Euler-Poisson qui intervient dans la modélisation mathématique des semi-conducteurs et des plasmas. On se place dans le cas uni-polaire stationnaire pour un flot potentiel. Apparaissent dans ce système trois paramètres physiques importants : la masse d'électrons, le temps de relaxation et la longueur de Debye. Ces paramètres sont petits devant la longueur caractéristique de l'appareil. Il est donc intéressant d'étudier leur limite en zéro. Nous nous sommes intéressés à ces problèmes et avons obtenu des résultats par une méthode de développements asymptotiques.
La dérivée topologique est un outil récent introduit par Sokolowski et Zochowski pour l'optimisation de formes. Elle permet de mesurer la variation d'une fonctionnelle dépendant d'un domaine géométrique quand on crée une petite cavité à l'intérieur de ce domaine. On peut définir la dérivée topologique pour les fonctionnelles d'énergie de problèmes d'obstacles, y compris les problèmes de contact sans frottement en mécanique des solides. Nous présentons quelque résultats, essentiellement numériques, qui confirment le bien-fondé de l'utilisation de la dérivée topologique dans le cadre d'une méthode ``levelset'', pour l'optimisation de forme du problème de Signiorini.
Dans cet exposé nous présenterons quelques résultats de stabilité, au sens de Lyapounov, des systèmes dynamiques du second ordre avec application au frottement sec. Plus précisément, nous nous intéressons à la stabilité et l'attractivité des solutions stationnaires d'une classe d'inclusions différentielles du second ordre. Le modèle considéré peut être utilisé en Mécanique du Contact pour décrire le comportement dynamique de systèmes à degrés de liberté finis soumis à des forces de frottement.
We consider the Euler system of compressible and entropic gaz dynamics in a bounded open domain with wall boundary condition. We prove the existence and the stability of families of solutions which correspond to a ground state plus a large entropy boundary layer. The ground state is a solution of the Euler system which satisfies some explicit additional conditions on the boundary. These conditions are used in a reduction of the system. We construct BKW expansions at all order. The profile problems are linear thanks to a transparency property. We prove the stability of these expansions by proving epsilon-conormal estimates for a characteristic boundary value problem.