En utilisant le travail de Guillén et Navarro Aznar sur les hyperrésolutions cubiques, Totaro a introduit un analogue de la filtration par le poids de Deligne sur l'homologie et la cohomologie des variétés algébriques réelles, fonctorielle, triviale sur les variétés lisses compactes, additive et compatible avec les résolutions des singularités. McCrory et Parusinski ont montré que la filtration par le poids réelle homologique et ses propriétés étaient induites par un complexe de chaînes filtré géométrique, appelé filtration géométrique. Un article avec Limoges montre également que le dual de ce dernier induit la filtration par le poids réelle cohomologique, et que ces filtrations géométriques induisent la compatibilité des filtrations par le poids réelles avec les produits usuels (cartésiens, cup, cap). Si l'on considère maintenant des variétés algébriques réelles munies de l'action d'un groupe fini, la fonctorialité des filtrations géométriques permet d'induire une filtration par le poids sur des homologie et cohomologie équivariantes, définies par van Hamel pour vérifier une dualité de Poincaré sur les variétés topologiques avec action. Des différences significatives apparaissent cependant entre les filtrations par le poids réelles équivariantes et non-équivariantes. Dans cet exposé, on verra comment la fonctorialité des complexes filtrés géométriques induit néanmoins la compatibilité des filtrations par le poids équivariantes réelles avec les produits cartésiens, cup et cap équivariants, ainsi qu'avec le morphisme de dualité de Poincaré équivariant.
Dans cette exposé, on montre comment donner une interprétation géométrique et dynamique à certains algorithmes de fraction continues multidimensionnelles; cela permet, en utilisant l'algorithme de Brun, de donner un modèle symbolique pour le flot des chambres de Weil.
Dans cet expose je m'interesserai a la resolution du probleme de Stokes stationnaire dans un domaine perfore avec des conditions aux bords de type Dirichlet inhomogene. Je discuterai la possibilite de developper la solution sur cette geometrie complexe comme une somme de solution dans des geometries plus simples (obtenues en considerant les perforations independamment). Je m'interesserai ensuite a l'application de ces formules pour calculer une equation homogeneisee quand le nombre de perforations diverge alors que leurs rayons tendent vers 0. Cet expose s'appuie sur des resultats obtenus en collaboration avec Amina Mecherbet, Ayman Moussa et Franck Sueur.
La théorie du micromagnétisme, qui décrit l'aimantation des matériaux ferromagnétiques à l’échelle mésoscopique a fait l'objet d'études approfondies depuis sa construction dans les années 1940 par W. F. Brown et Landau-Lifshitz. Actuellement, une forte demande de la part d’une large communauté de physiciens et d'ingénieurs concerne l’obtention de modèles encore plus complexes et stochastiques (spatiaux et temporels). L’utilisation de structures aléatoires spatiales est en effet naturelle pour les aimants modernes, obtenus par alliage de plusieurs matériaux ayant des propriétés magnétiques différentes. Nous étudierons l’homogénéisation de ces matériaux, décrits par les équations de Landau-Lifshitz avec des coefficients aléatoires.
Motivated by mirror symmetry, we study the counting of open curves in log Calabi-Yau surfaces. Although we start with a complex surface, the counting is achieved by applying methods from Berkovich geometry (non-archimedean analytic geometry). This gives rise to new geometric invariants inaccessible by classical methods. These invariants satisfy a list of very nice properties and can be computed explicitly. I will mention the conjectural wall-crossing formula, relations with the works of Gross-Hacking-Keel and applications towards mirror symmetry.
Groupe de travail : Fonctions Zêta, Théorie des Nombres, Géométrie
Nous présentons ici deux techniques, parfois concordantes, de stabilisation de schémas numériques semi-implicites pour les problèmes paraboliques non-linéaires. Les schémas proposés sont appliqués d'une part, en différences finies, lorsque les opérateurs sont discrétisés à l'aide de schémas compacts et, d'autre part, en éléments finis enutilisant une approche bi-grilles. Nous illustrons notre propos en considérant des modèles de champ de phase (Cahn-Hilliard et Allen -Cahn) et de mécanique des fluides (Navier-Stokes).
La logique linéaire différentielle (DiLL) a été construite après une étude de modèles vectoriels de la logique linéaire, où les preuves sont interprétées par des séries plus ou moins formelles. Il s'agit donc de modèles discrets, où la différentielle extrait la partie linéaire d'une série entière. On cherche à trouver un modèle continu de la logique linéaire différentielle classique : il nous faut à la fois une catégorie cartésienne close de fonctions lisses et une catégorie monoidale close d'espaces réfléxifs. Nous allons détailler une solution partielle à ce problème, à travers d'espaces nucléaires et d'espaces de distributions. Nous verrons comment ce modèle suggère une syntaxe séparée en classes de formules, chaque classe correspondant aux solutions d'une EDP linéaire. Nous montrerons que chaque classe liée à une EDP dont on peut construire la solution se comporte comme une exponentielle intermédiaire, et vérifie les règles exponentielles de la logique linéaire différentielle. Si le temps le permet, nous aborderons un travail en collaboration avec Y. Dabrowski , où nous trouvons plusieurs modèles lisses de la logique linéaire différentielle, en faisant le choix discriminant d'interpréter la disjonction multiplicative de LL par le produit epsilon de Schwartz.
Afin d'étudier les propriétés arithmétiques d'une fonction entière, Coman et Poletsky ont introduit une notion de mesure de transcendance. Cette mesure joue un rôle similaire aux mesures de transcendances en approximation diophantienne. Par la suite ils ont obtenu une majoration de cette mesure de transcendance sous des conditions de distribution des petites valeurs de la fonction entière étudiée. J'expliquerai comment cette mesure de transcendance peut être étendue aux fonctions méromorphes sur le disque unité ou le plan. De façon analogue à la situation entière, il sera possible de majorer cette mesure sous des conditions de distribution des petites valeurs de la fonction méromorphe et des pôles de celle-ci. J'appliquerai ce résultat au cas des fonctions elliptiques et fuchsiennes. Enfin j'expliquerai le lien entre les lemmes de zéros et les mesures de transcendances de cet exposé.
In the first part of this talk, I'll recall the construction of category of games and innocent deterministic strategies introduced by Harmer, Hyland and Mellies [1]. Compared with the original method by Hyland and Ong [2], this method holds two specific advantages. First, it outlines the structural conditions on certain games and strategies by introducing separate entities (the schedules) that focus most of the required proof work. Second, the methods lays out a pretty clear combinatorial ‘recipe’ that could be replicated in other settings. That will be the goal of the second part of the talk, which will develop a 2-categorical and sheaf-theoretic formulation of non-deterministic innocent strategies, based on this ‘recipe’. During the course of this construction, I'll outline specific properties that give us a better understanding of both deterministic and non-deterministic strategies.
[1] Categorical combinatorics of innocent strategies, Harmer, Hyland, Mellies, LiCS 2007.
[2] On full abstraction for PCF I, II and III, Hyland, Ong, Information and Computation 2000.
The aim of the talk is to provide a concise survey of some results about variational methods for image segmentation and inpainting, in the framework of functions of Special Bounded Variation in the sense of De Giorgi.
The lambda-calculus possesses a strong notion of extensionality, called ``the omega-rule'', which has been the subject of many investigations. It is a longstanding open problem whether the equivalence obtained by closing the theory of Böhm trees under the omega-rule is strictly included in Morris's original observational theory, as conjectured by Sallé in the seventies. We will first show that Morris's theory satisfies the omega-rule. We will then demonstrate that the two aforementioned theories actually coincide, thus disproving Sallé's conjecture.
The proof technique we develop is general enough to provide as a byproduct a new characterization, based on bounded eta-expansions, of the least extensional equality between Böhm trees.
Soit k un corps de caractéristique nulle et K=k((t)). Les ensembles semi-algébriques sur K sont des combinaisons booléennes d’ensembles algébriques et d’ensembles définis par des inégalités valuatives. Leur anneau de Grothendieck a été étudié par Hruskovski et Kazhdan qui le relient via l’intégration motivique au groupe de Grothendieck des variétés sur k. Je présenterai un morphisme de cet anneau vers le groupe de Grothendieck des motifs des variétés rigides analytiques sur K au sens d’Ayoub. Cela permet de raffiner la comparaison par Ayoub, Ivorra et Sebag entre fibre de Milnor motivique et foncteur cycle proche motivique d’Ayoub.
Herbrand's theorem, widely regarded as a cornerstone of proof theory, exposes some of the constructive content of classical logic. In its simplest form, it reduces the validity of a first-order purely existential formula to that of a finite disjunction. More generally, it gives a reduction of first-order validity to propositional validity, by understanding the structure of the assignment of first-order terms to existential quantifiers, and the causal dependency between quantifiers. In this paper, we show that Herbrand's theorem in its general form can be elegantly stated as a theorem in the framework of concurrent games. The causal structure of concurrent strategies, paired with annotations by first-order terms, is used to specify the dependency between quantifiers. Furthermore concurrent strategies can be composed, yielding a compositional proof of Herbrand's theorem, simply by interpreting classical sequent proofs in a well-chosen denotational model.