Nous considérons l'équation de Schrödinger avec une non-linéarité logarithmique, dont le signe est tel qu'il n'existe pas de solution stationnaire (non triviale). Des calculs explicites dans le cas de données gaussiennes font apparaître trois phénomènes nouveaux, dans le régime en temps grand : la dispersion est accrue d'un facteur logarithmique en temps, les normes de Sobolev (d'indice positif) croissent logarithmiquement en temps, et après une remise à l'échelle de la fonction inconnue, le module de la solution converge vers une gaussienne universelle (indépendante de la gaussienne initiale). Ces phénomènes persistent pour des données initiales générales (non nécessairement gaussiennes), quitte à considérer une limite faible pour le troisième point. Parmi les étapes de la preuve, nous présenterons une transformée de Madelung permettant de réduire l'équation à une variante de l'équation d'Euler compressible isotherme, dont le comportement en temps long fait intervenir une équation parabolique liée à un opérateur de Fokker-Planck. Il s'agit d'un travail en commun avec Isabelle Gallagher.
Dans ce travail en collaboration avec Jean-Michel Coron et Frédéric Marbach, nous considérons les équations de Navier-Stokes incompressible dans un domaine borné régulier dans le cas où une condition de glissement avec friction est prescrite sur le bord privé d’une partie non-vide. Cette sous-détermination exprime que l’on contrôle la partie restante du bord. Nous prouvons que pour toute donnée initiale d’énergie cinétique finie, pour tout temps positif, il existe une solution faible à la Leray qui s’annule au temps donné.
Nonlinear waves under ice plates are considered in this presentation. The ice plates floating on water can be modelled under certain conditions by thin elastic plates. Considering the influence of gravity and flexural effects a variety of two-dimensional nonlinear waves are discovered. The steady and unsteady solutions are analysed using weakly-nonlinear models, Hamiltonian formulations and numerical computations. Extensions including stratified fluids, three-dimensional effects will be discussed.
The accurate numerical simulation of large scale flows, together with the detailed modeling of flooding or drying of small-scale regions, is a difficult and a challenging problem. Adaptive mesh method allows, in principle, to solve accurately those scales. However in practice, on one hand, the lack of a priori or efficient a posteriori error estimates, especially for multidimensional hyperbolic problems, make the analysis harder. On the other hand, once a mesh refinement criterion is chosen, the difficult problem is to determine the mesh refinement threshold parameter which is certainly the most important part of the adaptive process. The smaller this parameter is, the higher the number of cells refined is at the expense of the computational cost. In this talk, we present a general procedure to determine automatically a mesh refinement threshold for any given mesh refinement criterion. To this end the decreasing rearrangement (distribution) function of the mesh refinement criterion is introduced to catch relevant scales. The efficiency of the automatic thresholding method is illustrated through the one and two dimensional Saint-Venant system.
Une structure réelle sur une variété projective complexe X est une involution antiholomorphe sur cette variété. La donnée d'une telle structure équivaut à la donnée d'une variété réelle dont la complexification est isomorphe à X (i.e. une forme réelle de X). Le but de cet exposé est de montrer comment l'étude des groupes d'automorphismes des surfaces rationnelles peut être utilisée en vue de donner des éléments de réponse à la question de la finitude du nombre de classes d'équivalence de structures réelles sur ces éclatés, i.e. la finitude du nombre de leurs formes réelles à isomorphisme près. En particulier, nous montrerons qu'une surface rationnelle dont le groupe d'automorphismes ne contient pas un groupe libre non-abélien admet un nombre fini de formes réelles puis nous donnerons au moins un exemple de surface rationnelle ayant à la fois un nombre fini de formes réelles à isomorphisme près et un ``grand'' groupe d'automorphismes.
TBA
Si on se donne un système générique de n équations polynomiales en n variables de degrés d_1,...,d_n, alors le théorème de Bézout implique que ce système a exactement le produit des degrés nombre de solutions dans le tore complexe (C^*)^n. Maintenant si l'on prend des combinaisons linéaires génériques des équations, on obtient un système équivalent où toutes les équations ont le même degré d (le maximum des degrés), et le théorème de Bézout donne alors la quantité d^n qui surestime le nombre de solutions du système si au moins un d_i est plus petit que d. En général, une borne sur le nombre de solutions isolées dans le tore complexe d'un système polynomial est donnée par le volume mixte de polytopes de Newton du système. Ce volume mixte est une fonction croissante de ses arguments. Lors de cet exposé, on donnera plusieurs caractérisations de cette croissance stricte. C'est un travail en commun avec Ivan Soprunov (Université de Cleveland).
Une diffusion de McKean-Vlasov correspond à une particule d'un système de type champ moyen dont la dimension tend vers l'infini. Il s'agit également de l'interprétation probabiliste de l'équation des milieux granulaires. Benachour, Roynette et Vallois ont prouvé la convergence en loi de ce genre de processus. Cattiaux, Guillin et Malrieu ont étendu ce résultat en ajoutant le gradient d'un potentiel convexe. Carrillo, McCann et Villani prouvent un résultat similaire dans un cas non-convexe en supposant que le centre de masse est fixe. En utilisant le dénombrement exact des mesures stationnaires et l'énergie-libre, la convergence en temps long sera prouvée sous des conditions naturelles portant uniquement sur la loi initiale.
On présentera des EDP modélisant l'adaptation d'une population sexuée à un (changement d')environnement. On propose d'étudier les états stationnaires de ces équations afin de quantifier la mal-adaptation de la population. La reproduction sexuée est modélisée par l'opérateur infinitésimal de Fisher, qui est non local, non linéaire, non monotone. Pour ces raisons l'existence d'éléments propres principaux ne peut pas être obtenue par la théorie de Krein-Rutman. Dans une seconde partie on expliquera comment, dans un certain rapport des échelles phénotypiques, la méthodologie de l'approximation WKB peut être adaptée à ces équations pour calculer des indicateurs de maladaptation. L'introduction d'une structure en âge fait apparaître des effets non linéaires (mur de mortalité).
Les séries de Dirichlet fonctions zêta à une ou plusieurs variables sont des objets importants qui apparaissent naturellement dans plusieurs domaines des mathématiques : la théorie des nombres, la géométrie algébrique, la théorie des groupes, la physique mathématique, les systèmes dynamiques, la géométrie fractale, etc. L’étude de ces fonctions est transversale à la subdivision traditionnelle en disciplines mathématiques : algèbre, analyse, topologie, géométrie, combinatoire qui sont toutes nécessaires pour les étudier. Dans cet exposé, nous présenterons un aperçu général de ce sujet et des méthodes utilisées pour étudier plusieurs classes de séries de Dirichlet et fonctions zêtas à plusieurs variables. Nous donnerons en particulier plusieurs résultats les concernant (prolongement méromorphe, localisation des singularités, valeurs spéciales, etc.) Nous donnerons aussi quelques applications (en théorie des nombres, en géométrie arithmétique, en géométrie fractale, etc.) pour justifier l’étude de ces différentes classes.
Monotonicity is a fundamental notion in mathematics and computation. For usual real-valued functions R → R this simply corresponds to the notion that a function is increasing (or decreasing) in its argument, however this can be parametrised by any partially ordered domain and codomain we wish. In computation we deal with programs that compute Boolean functions, {0,1} → {0,1}. Restricting to increasing functions over this structure can be seen as prohibiting the use of negation in a program; for instance monotone Boolean functions are computed by Boolean circuits without NOT gates. The idea of restricting negation scales to other models of computation, and for some important classes of functions the formulation is naturally robust, not depending on the particular model at hand, e.g. for the polynomial-time functions. Monotone computational problems abound in practice, e.g. sorting a string and detecting cliques in graphs, and 'nonuniform' monotone models of computation, such as monotone circuits, have been fundamental objects of study in computational complexity for decades.
In this talk I will propose a project that develops logical characterisations of monotone complexity classes, via a proof theoretic approach. Namely, the project will identify theories of arithmetic whose formally representable functions coincide with certain monotone classes, and also develop fundamental recursion-theoretic programming languages in which to extract the monotone functions themselves. In particular the project focusses on the role of structural proof theory, i.e. the duplication and erasure of formulae, in controlling monotonicity.
A polyomino P is called 2-convex if for every two cells belonging to P, there exists a monotone path included in P with at most two changes of direction. We present some tomographical properties of 2-convex polyominoes from their horizontal and vertical projections and gives an algorithm that reconstructs them from a given couple of projections. We discuss its complexity.
On considère une famille méromorphe d'endomorphismes d'un espace projectif complexe paramétrée par le disque. Cette donnée nous fournit une famille de mesures de probabilité paramétrée par le disque épointé. Nous montrerons comment on peut analyser la convergence de cette suite au dessus de la fibre centrale en utilisant des techniques non-archimédiennes, et en déduire un contrôle de l'explosion de l'exposant de Lyapunov à l'origine.
Balanced words have been studied a lot in the last decades. In particular, Christoffel words that are a special case of finite balanced words. In this talk, I introduce the Balance matrix that studies the balancedness of these words and I define some tools to extend this property by defining a second order of balancedness. I recall some properties about the continued fraction development and the Stern-Brocot tree to prove a recursive formula based on the shape of the path from the root of the Stern-Brocot. Finally, I show that among all infinite paths in the Stern-Brocot tree, the one that converges to φ, the golden ratio, minimizes the growth of the second order balance.
A partir de l'exemple d'une recherche en biomath, nous justifierons l'utilité de l'identification pour un mathématicien appliqué, mais surtout de l'identifiabilité, moins connue. Nous essaierons de montrer que ses questions sont typiques de celles qu'un mathématicien appliqué se pose, et pas seulement en biomaths. Le domaine est à la confluence entre l'automatique, les statistiques et l'informatique fondamentale (ou l'algèbre différentielle). Nous donnerons alors le vocabulaire de base avec quelques exemples. Puis, nous relirons un article dans lequel certaines affirmations seront discutées. On verra l'apport des mathématiques pour vérifier/infirmer certaines affirmations.
On s'intéressera à un modèle naturel de sous-variété algébrique aléatoire de RP^n, obtenue comme lieu d'annulation d'un polynôme P_d aléatoire de degré d. Je présenterai deux résultats qui donnent les asymptotiques de l'espérance et de la variance du volume de cette sous-variété, lorsque d tend vers l'infini. Nous montrerons également que (P_d)^{-1}(0) s'équidistribue dans RP^n asymptotiquement, en un sens à préciser. Plus généralement, ces résultats sont valables pour des sous-variétés aléatoires d'une variété projective réelle. Les asymptotiques ne dépendent alors de la variété ambiante que par sa dimension et son volume.
Recurrence relations have been of interest since ancient times. Perhaps the most famous is the Fibonacci numbers, where each additional term in the sequence is obtained as the sum of the previous two. I will show how we can use a graphical language of string diagrams–a “graphical linear algebra”–to reason about recurrence relations, and as a bonus, obtain efficient implementations. This application comes from a general string diagrammatic theory of signal flow graphs–a model of computation originally studied by Claude Shannon in the 1940s–developed in collaboration with Filippo Bonchi and Fabio Zanasi, and published at CONCUR 2014 and PoPL 2015.
For some differential equations the addition of a carefully chosen, random noise term can produce a regularizing effect (e.g. solutions are more regular, or restored uniqueness). I will first consider a few easy examples (ODEs) to introduce some of these regularizing mechanisms, then detail two cases where we have regularization for a PDE: the (stochastic) linear transport equation and a (stochastic) kinetic equation with force term. I will present some classical results for these two equations, related to well--posedness and regularity of solutions, that can be obtained under weaker hypothesis in the stochastic setting. For both equations, results are obtained through the analysis of the regularity properties of characteristics: they solve a stochastic differential equation (SDE), which is degenerate for the kinetic equation. We’ll see that characteristics are more regular than one could expect: this can be shown using the regularizing effects of an associated parabolic or elliptic (degenerate, for the kinetic equation) PDE. If time allows, I will conclude by discussing some ongoing work on regularization by noise (in particular, selection by noise) for a nonlinear PDE, the Burgers equation: These results are from joint works with Franco Flandoli, Benjamin Gess, Enrico Priola and Julien Vovelle.
Dans cet exposé, nous introduisons une description combinatoire pour décrire et classifier les G-variétés normales avec orbites sphériques, où G est un groupe algébrique linéaire connexe réductif. Un des exemples fondamentaux est le cas où G = T est un tore algébrique (c'est à dire, T est le produit d'un nombre fini d'exemplaires du groupe multiplicatif du corps de base). Dans ce cas, l'approche d'Altmann-Hausen-Suess décrit une T-variété normale X via une modification T-équivariante f de X' vers X, où X' est une fibration torique au dessus d'une variété lisse Y. Leur approche obtenue en 2008 est de considérer un diviseur sur Y dont les coefficients sont des subdivisions polyédrales encodant l'information sur la modification f et la géométrie des fibres de la fibration de X' vers Y. En particulier, lorsque Y est un point, nous retrouvons la description classique des variétés toriques en termes d'éventails de cônes polyédraux saillants. Nous expliquerons comment généraliser cette description dans le cadre plus général des actions de groupes réductifs avec orbites sphériques et discuterons sur les applications possibles en théorie des singularités. L'exposé se veut introductif et ne demande pas de prérequis particulier.
This thesis is devoted to the mathematical analysis of some heterogeneous models raised by uid mechanics. In particular, it is devoted to the theoretical study of partial dierential equations used to describe the main models that we present in the following. Firstly, we are interested to study the motion of a incompressible newtonien uids in a basin with degenerate topography. The mathematical model studied derives from 3dincompressible Navier-Stokes equations. We are interested to prove that the Cauchy problem associated is well posed. The second part in my thesis is devoted to study a model that arises from dispersive Navier-Stokes equations (that includes dispersive corrections to the classical compressible Navier-Stokes equations). Our model is derived from the last model assuming that the Mach number is very low. The obtained system is called ghost eect system, which is so named because it cannot be derived from the Navier-Stokes system of gas dynamics, while it can be derived from kinetic theory. The main goal of this part is to extend a result concerning the local existence of strong solution to a global in time existence of weak solutions. Finally, we are interested to prove certain functional inequalities who have noticeable interest in solving mathematical systems linked to uid mechanics.