Soit (M,g) une surface Riemannienne complète, non-compacte. On considère des opérateurs de la forme Delta + aK + W, où Delta est le Laplacian positif ou nul, K la courbure de Gauss, W une fonction localement intégrable, et a un réel strictement positif. On suppose que la partie positive de W est intégrable, et on se pose la question suivante : ``Quelles conclusions sur (M,g) et W peut-on déduire du fait que Delta + aK + W est positif ou nul ?'' Cette question est motivée par l'étude des surfaces minimales, ou à courbure moyenne constante, stables. Comme conséquence de nos résultats, on donne une nouvelle preuve du théorème de Huber et de l'inégalité de Cohn-Vossen. On améliore des résultats antérieurs dans les cas où W est positif ou nul et a entre 0 et 1/4.
Attention, date inhabituelle, c'est un jeudi à 14h00 ! Je présenterai les résultats des travaux avec Xavier Gomez-Mont et Luis Giraldo sur l'indice GSV des champs de vecteurs sur les hypersurfaces réelles singulières. L'indice GSV généralise l'indice de Poincaré-Hopf sur des hypersurfaces singulières. Je parlerai surtout de comment on peut le calculer à l'aide de signatures de certaines formes bilinéaires définies sur des algèbres locales.
Les catégories à trace ont été utilisées dans le domaine de la sémantique dénotationnelle (en logique comme en informatique) pour modéliser des situations de rétroaction raisonnables''. La construction G(.) permet, à partir d'une catégorie à trace, d'obtenir une nouvelle catégorie dont la composition peut être vue comme une
rétroaction parallèle''. Les machines synchrones'' ont été utilisées pour donner une sémantique des langages de programmation synchrones (Lustre, Esterel...) en termes d'automates. Dans ces sémantiques, la mise en parallèle de deux programmes est modélisée par une construction appelée
produit synchrone''. On verra que les machines synchrones peuvent être vues comme une catégorie à trace S et que le produit synchrone de deux machines correspond à leur composition dans G(S).
9h-10h : Nicolae CINDEA (Université de Clermont-Ferrand) ; 10h-11h : Alberto FARINA (ICJ, Université Lyon 1) ; 11h30-12h30 : Clément JOURDANA (LJK, Université Grenoble 1) ; 14h30-15h30 : Alexandre GIROUARD (LAMA, Université de Chambéry) ; 15h30-16h30 : Dominique SPEHNER (Institut Fourier, Université Grenoble 1)
Le système de types input/output induit du sous-typage dans le pi-calcul. De manière un peu surprenante, le sous-typage se prête mal à une adaptation à des calculs proches (le calcul des fusions, le pi-calcul à mobilité interne). On construit une modification du calcul des fusions dans laquelle le mécanisme du sous-typage s'applique, ce qui permet d'en éclairer certains aspects.
10h30-11h30 : Emmanuel RUSS (Institut Fourier, Grenoble 1) ; 11h30-12h30 : Ludovic METIVIER (LJK, Grenoble 1) ; 14h-15h : Rachid TOUZANI (Université de Clermont-Ferrand) ; 15h-16h : Morgane BERGOT (ICJ, Université Lyon 1) ; 16h30-17h30 : Frédéric CHARDARD (ICJ, Université de Saint-Etienne) ; 17h30 -18h30 : Albert FATHI (UMPA, ENS LYON)
I'll discuss the following two spectral optimization problems: (1) In many optical and quantum systems it is desirable to engineer a device to spatially confine energy in a particular mode for a long period of time. I'll discuss the mathematics of energy-conserving, spatially-extended systems and present analytical and computational results on optimal energy confining structures. (2) In this part of the talk, I'll discuss the shape optimization problem where the objective function is a convex combination of sequential Laplace-Dirichlet eigenvalues. We show that as a function of the combination parameters, the optimal value is non-decreasing, Lipschitz continuous, and concave and that the minimizing set is upper hemicontinuous. For star-shaped domains with smooth boundary, we study combination parameter sets for which the ball is a local minimum. We propose a method for computing optimal domains and computationally study several properties of minimizers, including uniqueness, connectivity, symmetry, and eigenvalue multiplicity. This is joint work with Chiu-Yen Kao.
I will describe how to construct Hrushovski-Kazhdan style integration in real closed (valued) fields. Of course all the real closed fields that we shall consider are non-archimedean. A typical example is R((Q)). The setting is based on early work by van den Dries-Lewenberg on T-convex theories. It works for any polynomial-bounded o-minimal expansion of the theory of real closed fields.
En 1974, P. Deligne établit l'existence d'une filtration par le poids sur la cohomologie rationnelle des variétés algébriques complexes. Un analogue de cette filtration pour les variétés algébriques réelles a été introduit par Totaro en 2002. Dans un article publié en 2011, C.McCrory et A. Parusinski en enrichissent la compréhension, notamment en la réalisant par un certain complexe de chaînes filtré, possédant des propriétés que l'on peut lire sur la suite spectrale induite. Considérons maintenant des variétés algébriques réelles munies d'une action algébrique de groupe. La fonctorialité du complexe de poids nous permet de le munir d'une action induite. Ce complexe filtré de poids avec action est la première pierre d'une filtration par le poids équivariante pour les variétés algébriques réelles avec action. On établira différentes propriétés de ces objets équivariants, notamment dans le cas du groupe à deux éléments. On verra ainsi qu'un résultat de``découpage'' sur les variétés Nash implique un analogue de la suite exacte courte de Smith tenant compte de la filtration, que l'on peut utiliser pour extraire d'une certaine suite spectrale des invariants additifs sur les variétés algébriques réelles munies d'une involution algébrique.
Seely’s paper Locally cartesian closed categories and type theory contains a well-known result in categorical type theory: that the category of locally cartesian closed categories is equivalent to the category of Martin-Löf type theories with Π, Σ, and extensional identity types. However, Seely’s proof relies on the problematic assumption that substitution in types can be interpreted by pullbacks. Here we prove a corrected version of Seely’s theorem: that the Bénabou-Hofmann interpretation of Martin-Löf type theory in locally cartesian closed categories yields a biequivalence of 2-categories. To facilitate the technical development we employ categories with families as a substitute for syntactic Martin-Löf type theories. As a second result we prove that if we remove Π-types the resulting categories with families are biequivalent to left exact categories.
La structure obtenue en ajoutant au corps des réels toutes les fonctions analytiques restreintes et toutes les fonctions puissance'' est o-minimale. C'est aussi le cas de celle obtenue en ajoutant au corps des réels toutes les fonctions analytiques restreintes et la fonction exponentielle. La première définit strictement moins d'ensembles que la seconde. Je discuterai d'une conjecture stipulant la non-existence d'une structure
intermédiaire'': définissant strictement plus d'ensembles que la première mais strictement moins que la seconde.
It is well known that the real numbers arise from the metric completion of the rational numbers, with the metric induced by the usual absolute value. We seek a computational version of this phenomenon, with the idea that the role of the rationals should be played by the affine lambda-calculus, whose dynamics is finitary; the full lambda-calculus should then appear as a suitable metric completion of the affine lambda-calculus. We propose a technical realization of this idea: we introduce an affine lambda-calculus, based on a fragment of intuitionistic multiplicative linear logic; the calculus is endowed with a notion of distance making the set of terms an incomplete metric space; we show that the completion of this space yields an infinitary affine lambda-calculus, whose quotient under a suitable partial equivalence relation is exactly the full (non-affine) lambda-calculus. We also show how this construction brings interesting insights on some standard rewriting properties of the lambda-calculus (finite developments, confluence, standardization, head normalization and solvability).
Les mots sturmiens sont une façon de coder les droites discrètes apériodiques. Ils ont été étudiés depuis la fin du 19ème siècle et disposent de nombreuses caractérisations. L'une d'elles, obtenue par Vuillon, est centrée sur la notion de mot de retour. Cette thèse a pour objet l'étude des mots sturmiens en dimension 2 vus comme codages des plans discrets apériodiques. L'objectif est d'aller vers une caractérisation des mots sturmiens bi-dimensionnels analogue à celle obtenue par Vuillon en dimension 1. Mais des problèmes propres à la dimension 2 rendent cette étude délicate, tels l'absence de concaténation de mots ou la difficulté à localiser un facteur au sein d'un mot. Afin d'y faire face, nous introduisons en dimension 2 les notions de motifs, motifs pointés, mots de localisation et mots de retour. Nous obtenons ainsi un prolongement à la dimension 2 d'un théorème de Morse et Hedlund concernant certains mots de retour dans un mot sturmien. Ce résultat nous permet d'établir un nouvel algorithme de fractions continues et nous permet de proposer, dans un cadre restreint, une notion de suite dérivée.
This is a joint work with Krzysztof Kurdyka and Adam Parusinski. We say a map f : Rn,0 → Rp is blow-analytic ([2]) if there is a composition σ : M → Rn of locally finitely many blow-ups so that f ◦σ is analytic. We say a map f : Rn,0 → Rp is arc-analytic ([3]) if f◦α is analytic for any analytic map α : R,0 → Rn,0. A blow-analytic map is clearly arc-analytic. It is known that ([1]) a semi- algebraic, arc analytic map is blow-analytic. If a bi-Lipschitz subanalytic homeomorphism is arc-analytic, then the inverse is arc-analytic ([4]). Let us consider a semi-algebraic homeomorphism h : Rn,0 → Rn,0. We show the following conditions are equivalent. • h is arc-analytic and h−1 is Lipschitz. • h−1 is arc-analytic and h is Lipschitz. The key step is to show that det(dh) is bounded away from infinity and zero. To show this, we need (at this moment at least) to compare virtual Poincare polynomials (or motivic measures) of partitions of arc space L(Rn, 0) with respect to certain Nash modification which sends everything normal crossing. In the talk, we describe the detailed proof of the following easier version: A (bi-)blow-analytic homeomotphism is bi-Lipschitz if it is Lipschitz and semi-algebraic.
Introduced as symmetric types for pi-processes, session types have been developed into a large theory for verification of message-passing programs. Their main principle is as follows: a global type describing the expected interactions inside a network is projected into several local types: if every agent abides to its local type, the whole network abides to the global specification. I will present the Multiparty Session Types theory through recent developments: full-abstract embedding into the pi-calculus, nested protocols, automatic monitor generation, session types with multisession assertions.
On regardera les programmes que l'on peut extraire des preuves du théorème de Ramsey infini. On ira jusqu'à extraire un programme SML pour le ``happy ending problem'', qui trouve P sommets d'un polyogone convexe à partir de N points du plan si N est assez grand (http://fr.wikipedia.org/wiki/Happy_Ending_problem). On regardera aussi le programme que donne la preuve de Ramsey par l'ultrafiltre par rapport à la preuve classique. Enfin, on se posera des questions sur les liens possibles entre la compléxité des programmes liés à Ramsey et des bornes sur la fonction de Ramsey.
Let X and Y be nonsingular real algebraic varieties. A regulous map from X into Y is a continuous map, which is also rational. Such maps form an intermediate class between regular and semi-algebraic maps, and have some remarkable properties. In particular, they are very usefull in the study of pre-algebraic and algebraic vector bundles. For example, one can show that every pre-algebraic vector bundle on X becomes algebraic after finitely many blowin-ups. Consequently, the Stiefel-Whitney classes of pre-algebraic real vector bundles on X are algebraic.
We study distributed algorithms on massive graphs where links represent a particular relationship between nodes (for instance, nodes may represent phone numbers and links may indicate telephone calls). Since such graphs are massive they need to be processed in a distributed and streaming way. When computing graph-theoretic properties, nodes become natural units for distributed compu- tation. Links do not necessarily represent communication channels between the computing units and therefore do not restrict the communication flow. Our goal is to model and analyze the computational power of such distributed systems where one computing unit is assigned to each node.