Séminaire de l'équipe
Géométrie


Organisateur: Georges Comte.

Salle zoom: https://cnrs.zoom.us/j/97043991153?pwd=ZkhVdHc0NlQwQzdyanp4L2JqWTFydz09.

Lien ical.

Frank Sottile, Texas A & M. 2:00:00 28 avril 2008 14:00 geo
Khovansky-Rolle Continuation for real solutions
Abstract

Current continuation methods for finding all solutions to systems of polynomial equations first compute all complex solutions, and then sieve them to find the real solutions. This method is not optimal in that number of paths to be followed may not reflect the actual number of real solutions. This problem is particularly acute for fewnomial systems, a class of systems whose number of real solutions is typically much smaller than their number of complex solutions. Recent work has established a new bound for the number of real solutions to a system of fewnomials, by transforming the system of polynomials into an equivalent system of master functions on a hyperplane complement, called the gale dual system. Sturmfels observed that the method used to establish those bounds, the Khovanskii-Rolle Theorem, could be the basis of a continuation algorithm to compute all real solutions, which has the additional feature that the path continuation only follows real solutions. In this talk, I will sketch the main ideas in this new algorithm. This will also include a sketch of the proof of these new fewnomial bounds, and some of the continuation issues which arisen in an implementation of the algorithm. We remark that the complexity of this algorithm depends on the ambient (real dimension) and the fewnomial bound, and not on the number of complex solutions. The implementation of the algorithm is joint work with Daniel J. Bates, while the fewnomial bounds and reduction to Gale systems is work with Frédéric Bihan and Bates.

T. Fukui, Saitama University. 2:00:00 25 avril 2008 10:15 geo
Grégoire Charlot, Institut Fourier. 2:00:00 11 avril 2008 10:15 geo
Géométrie riemannienne singulière du point de vue de la théorie du contrôle
Abstract

On considère un type de métriques riemanniennes singulières qui apparait naturellement en théorie du contrôle : soient X et Y deux champs de vecteurs sur une variété M de dimension 2. Si X et Y forment partout une famille libre, ils définissent naturellement sur M une métrique riemannienne dont ils forment un champ de bases orthonormées. Quand X et Y ne sont plus partout linéairement indépendants, sous certaines conditions génériques de non intégrabilité de la distribution qu'ils engendrent, ils définissent sur M une métrique sous-riemannienne sur une distribution de rang non constant, qu'on peut voir comme une métrique riemannienne singulière. Ces structures font apparaître des phénomènes intéressants, en particulier pour ce qui concerne les liens entre courbure, lieu conjugué et topologie de la variété. Je présenterai, lors de cet exposé, un résultat du type ``formule de Gauss-Bonnet'' démontré par Agrachev, Boscain et Sigalotti et expliquerai les difficultés liées à sa démonstration dans le cas ou la métrique présente des singularités de type Martinet.

Jacques-Olivier Lachaud, LAMA. 2:00:00 4 avril 2008 10:15 geo
Topologie discrète et applications
Abstract

Cet exposé fera un survol du domaine de la topologie des images, ou digital topology'', ainsi que quelques-unes de ses applications. L'espace image est vu comme un sous-ensemble de Z^n, une forme dans une image est un sous-ensemble de Z^n. Nous présenterons ainsi les approches graphes, cellulaires et intermédiaires. On verra qu'une des difficultés est de définir ce qu'est une surface (discrète'' donc) dans ces espaces, afin de retrouver les propriétés classiques de l'espace euclidien. Ensuite, nous montrerons quelques algorithmes effectifs d'extraction de surfaces, avec quelques applications. Si le temps le permet, nous nous intéresserons au calcul effectif de l'homologie, afin d'obtenir des invariants topologiques sur les formes discrètes.

Frédéric Jean, ENSTA. 2:00:00 28 mars 2008 10:15 geo
Sur les courbes singulières d'une distribution
Abstract

Dans cet exposé, nous donnons une caractérisation très complète des courbes singulières pour une distribution D générique (la notion de généricité utilisée ici est très forte car générique signifie appartenant à un ouvert dense de l'ensemble des distributions, dont le complémentaire est de codimension arbitrairement grande). Nous établirons que, si D est générique, toute courbe singulière admet un unique relèvement extrémal par le principe du maximum de Pontryagin et que le contrôle associé à la trajectoire se calcule presque partout par feedback à partir de ce relèvement. Ceci nous permet de montrer en particulier que, si D n'est pas de dimension 2, une métrique sous-riemannienne (D,g) générique n'admet pas de trajectoire minimisante singulière, ce qui à son tour a de nombreuses conséquences sur la régularité de la distance et des sphères sous-riemanniennes.

Jérome Bolte, Université de Paris 6. 2:00:00 21 mars 2008 10:15 geo
Caractérisations des inégalités de Lojasiewicz
Abstract

Après avoir exposé quelques motivations de ce travail dans la sphère de l'optimisation : méthodes de gradient, minimisation alternée..., nous montrerons comment les inégalités de Lojasiewicz peuvent se caractériser dans un cadre relativement général, ie celui des fonctions convexes à un carré près dans les espaces de Hilbert. On examinera en particulier les reformulations en termes de ``bornes d'erreurs'', de lipschitzianité de l'application sous-niveau, de talweg ou encore de flots de sous-gradient. Quelques résultats positifs et négatifs concernant les fonctions convexes seront évoqués.

Stéphane Simon, LAMA. 2:00:00 14 mars 2008 10:15 geo
Introduction a l'homologie de Morse par la voie facile
Abstract

On donnera les ingredients principaux de la construction du complexe de Morse-Smale a coefficients dans Z_2.

Mayada Slayman, LAMA. 2:00:00 7 mars 2008 10:15 geo
Bras articulé et distribution drapeau
Abstract

Cet exposé a pour but de nous montrer que le problème de modélisation de l’évolution cinématique d’une voiture avec n remorques étudié par F. Jean et qui est décrit par une distribution de Goursat sur l’espace de configuration R^2 \times (S1)^{n+1}, se généralise en un problème de modélisation cinématique du bras articulé de longueur n sur R^{k+1} de sorte qu’à cette modélisation est naturellement associée une distribution multi-drapeaux spéciaux. On montre une généralisation des singularités construites par F.Jean dans ce contexte en liaison avec les singularités définies par P.Mormul pour les distributions drapeaux spéciaux.

Georges Comte, Université de Nice. 2:00:00 29 février 2008 10:15 geo
Equisingularité réelle : invariants locaux et conditions de régularité
Abstract

Nous définissons deux suites finies d'invariants locaux en géométrie sous-analytique réelle. L'une est l'équivalent réel des caractéristiques évanescentes de Kashiwara (dont on sait en géométrie complexe qu'elles sont des combinaisons linéaires des multiplicités des variétés polaires), l'autre la localisation des courbures de Lipschitz-Killing (et contient donc la densité locale). Nous montrons que chaque terme d'une suite est combinaison linéaire des termes de l'autre et varie continument le long des strates d'une stratification de Verdier (ou (b*)-régulière) d'un sous-analytique fermé. Il s'agit de la version réelle du théorème de Teissier/Henry-Merle selon lequel la condition de Whitney équivaut à la constance des multiplicités des variétés polaires.

Fernand Pelletier, LAMA. 2:00:00 8 février 2008 10:15 geo
Patrick Verovic, LAMA. 2:00:00 1 février 2008 10:15 geo
La géométrie de Hilbert d'un polygone convexe
Abstract

Cet exposé a pour but de nous révéler que la géométrie de Hilbert d'un domaine polygonal convexe est Lipschitz équivalente au plan euclidien.

Christophe Raffalli, LAMA. 2:00:00 14 décembre 2007 10:15 geo
Deux constructions élémentaires de courbes réelles maximales sur l'hyperboloïde (travail en collaboration avec F. Mangolte)
Abstract

La question de l'existence de certaines surfaces quartique de P^3(R) a été posée par Hilbert dans la première partie de son 16° problème. En 1975, Kharlamov a montré l'existence de ces surfaces quartiques de P^3(R) par une méthode non constructive. En 1979, Viro a montré comment, en partant de courbes sur l'hyperboloïde, on pouvait prouver directement l'existence des surfaces quartiques P^3(R) considérées. Mais Viro ne détaille pas la construction de toutes les courbes utilisées. Dans cet exposé, on construira explicitement les courbes réelles de genre 9 avec 10 composantes connexes nécessaires et on appliquera ce résultat aux surfaces quartiques.

Frédéric Bihan, LAMA. 2:00:00 7 décembre 2007 10:15 geo
Nouvelles bornes sur la topologie des hypersurfaces fewnomiales
Abstract

Dans cet exposé, on présentera des bornes sur la topologie d'un hypersurface fewnomiale qui améliorent grandement celles précédemment connues. Ces nouvelles bornes utilisent celles obtenues récémment par l'orateur et Frank Sottile sur le nombre de solutions positives de systèmes fewnomiaux. On montrera aussi, si le temps le permet, comment on peut modifier légèrement la preuve de de ces dernières bornes de manière à en obtenir d'autres sur le nombre de solutions réelles, qui soient également asymptotiquement optimales.

Antonio Costa, UNED Madrid. 2:00:00 30 novembre 2007 10:15 geo
Serge Randriambololona, Lyon. 2:00:00 23 novembre 2007 10:15 geo
Définir la multiplication restreinte dans une expansion o-minimale du groupe additif ordonné des réels (Travail en cours, en commun avec Y. Peterzil)
Abstract

Les axiomes d'o-minimalité les plus généraux ne spécifient pas qu'une structure o-minimale définit une structure de corps réel clos sur son univers. Néanmoins, le théorème de trichotomie assure qu'il est difficile de ne pas y trouver un corps: à moins qu'une structure o-minimale soit triviale'' oulocalement modulaire'', un corps y est type-définissable. Dans le cas où la structure a pour univers l'ensemble des réels muni de son ordre naturel et définit le graphe de l'addition, et qu'elle est ni triviale ni localement modulaire, il se peut que la structure de corps découlant du théorème de trichotomie ne soit pas la structure naturelle de corps des réels. Nous présenterons quelques critères assurant que ce soit bien le cas.

Frédéric Mangolte, LAMA. 2:00:00 16 novembre 2007 10:15 geo
Vers une généralisation en dimension trois d'un théorème de Comessatti sur les surfaces rationnelles réelles
Abstract

D’après un théorème célèbre énoncé par Comessatti en 1914, si X est une surface géométriquement rationnelle et définie sur R, alors une composante connexe orientable S de X a son genre g(S) majoré par 1. Ce résultat reste vrai si on considère plus généralement X uniréglée. En dimension trois, le genre ne suffit plus à classifier les variétés compactes orientables et la classe des variétés uniréglées est plus vaste. Nous discuterons des généralisations possibles en dimension trois de l’énoncé de Comessatti à la lumière de plusieurs résultats récents de Kollár, Viterbo, Eliashberg, Huisman, Catanese et moi-même.

J.-P. Rolin, IMB, Dijon. 2:00:00 9 novembre 2007 10:15 geo
Une structure o-minimale qui n’admet pas de décomposition cellulaire de classe $C^{\infty}$
Abstract

Un résultat classique sur les structures o-minimales affirme que tout ensemble définissable est, pour tout entier $k$, une union finie de cellules de classe $C^k$. En fait, la plupart des structures o-minimales connues ont la propriété de décomposition cellulaire analytique. Dans un travail récent en commun avec Olivier Legal (Université de Rennes), nous montrons comment construire, à partir d’algèbres quasianalytiques convenables, une structure o-minimale qui n’admet pas la propriété de décomposition cellulaire $C^{\infty}$.

Alexei Tsygvintsev, ENS Lyon. 2:00:00 26 octobre 2007 10:15 geo
Systèmes fuchsiens, le problème des trois corps et des toupies flottantes
Abstract

La mécanique classique nous parvient des équations différentielles sous la forme : $\frac{dX}{dt}=f(X)$, $t\in \mathbb{R}$, $X\in \mathbb R^n$. Normalement, il y a très peu choses qu’on sait dire sur la dynamique globale des solutions $X(t)$ vues comme des courbes réelles dans $\mathbb{R}^n$. L’étude s’enrichit beaucoup quand on complexifie le problème i.e considère $t\in \mathbb{C}$, $X\in \mathbb C^n$. L’approche de Ziglin (1980’s) réduit alors l’analyse des propriétés dynamiques (l’intégrabilité, la stabilité etc.) à l’étude purement algébrique des sous-groupes de $\mathrm{GL}(n,\mathbb{C})$ qui apparaissent comme des groupes de monodromie des équations aux variations autour d’une solution particulière. Dans cette exposé je présente des résultats récents dans cette direction relatives aux problèmes classiques da la mécanique : le problème des trois corps, le Rattleback et le Levitron (une toupie flottant dans le champ magnétique). Quelques démonstrations sont prévues. Références [1] A. Tsygvintsev, On some exceptional cases in the integrability of the three-body problem, Celestial Mechanics and Dynamical Astronomy, Vol. 99, No. 1, 237-247, 2007 [2] H. Dullin, A. Tsygvintsev, On the analytic non-integrability of the Rattleback problem, Annales de la faculté des sciences de Toulouse, à paraître

Nicolas Dutertre, CMI Marseille. 2:00:00 19 octobre 2007 10:15 geo
Une formule de Gauss-Bonnet pour les ensembles semi-algébriques fermés
Abstract

On établit une formule pour la courbure de Gauss-Bonnet-Chern totale d'un ensemble semi-algébrique fermé X de R^n en fonction de sa caractéristique d'Euler-Poincaré et de son comportement à l'infini.

LAMA, LAMA. 2:00:00 5 octobre 2007 10:15 geo
Relâche
Abstract