Cet exposé a pour but de nous montrer que le problème de modélisation de l’évolution cinématique d’une voiture avec n remorques étudié par F. Jean et qui est décrit par une distribution de Goursat sur l’espace de configuration R^2 \times (S1)^{n+1}, se généralise en un problème de modélisation cinématique du bras articulé de longueur n sur R^{k+1} de sorte qu’à cette modélisation est naturellement associée une distribution multi-drapeaux spéciaux. On montre une généralisation des singularités construites par F.Jean dans ce contexte en liaison avec les singularités définies par P.Mormul pour les distributions drapeaux spéciaux.
Nous définissons deux suites finies d'invariants locaux en géométrie sous-analytique réelle. L'une est l'équivalent réel des caractéristiques évanescentes de Kashiwara (dont on sait en géométrie complexe qu'elles sont des combinaisons linéaires des multiplicités des variétés polaires), l'autre la localisation des courbures de Lipschitz-Killing (et contient donc la densité locale). Nous montrons que chaque terme d'une suite est combinaison linéaire des termes de l'autre et varie continument le long des strates d'une stratification de Verdier (ou (b*)-régulière) d'un sous-analytique fermé. Il s'agit de la version réelle du théorème de Teissier/Henry-Merle selon lequel la condition de Whitney équivaut à la constance des multiplicités des variétés polaires.
Cet exposé a pour but de nous révéler que la géométrie de Hilbert d'un domaine polygonal convexe est Lipschitz équivalente au plan euclidien.
La question de l'existence de certaines surfaces quartique de P^3(R) a été posée par Hilbert dans la première partie de son 16° problème. En 1975, Kharlamov a montré l'existence de ces surfaces quartiques de P^3(R) par une méthode non constructive. En 1979, Viro a montré comment, en partant de courbes sur l'hyperboloïde, on pouvait prouver directement l'existence des surfaces quartiques P^3(R) considérées. Mais Viro ne détaille pas la construction de toutes les courbes utilisées. Dans cet exposé, on construira explicitement les courbes réelles de genre 9 avec 10 composantes connexes nécessaires et on appliquera ce résultat aux surfaces quartiques.
Dans cet exposé, on présentera des bornes sur la topologie d'un hypersurface fewnomiale qui améliorent grandement celles précédemment connues. Ces nouvelles bornes utilisent celles obtenues récémment par l'orateur et Frank Sottile sur le nombre de solutions positives de systèmes fewnomiaux. On montrera aussi, si le temps le permet, comment on peut modifier légèrement la preuve de de ces dernières bornes de manière à en obtenir d'autres sur le nombre de solutions réelles, qui soient également asymptotiquement optimales.
Les axiomes d'o-minimalité les plus généraux ne spécifient pas qu'une structure o-minimale définit une structure de corps réel clos sur son univers. Néanmoins, le théorème de trichotomie assure qu'il est difficile de ne pas y trouver un corps: à moins qu'une structure o-minimale soit triviale'' ou
localement modulaire'', un corps y est type-définissable. Dans le cas où la structure a pour univers l'ensemble des réels muni de son ordre naturel et définit le graphe de l'addition, et qu'elle est ni triviale ni localement modulaire, il se peut que la structure de corps découlant du théorème de trichotomie ne soit pas la structure naturelle de corps des réels. Nous présenterons quelques critères assurant que ce soit bien le cas.
D’après un théorème célèbre énoncé par Comessatti en 1914, si X est une surface géométriquement rationnelle et définie sur R, alors une composante connexe orientable S de X a son genre g(S) majoré par 1. Ce résultat reste vrai si on considère plus généralement X uniréglée. En dimension trois, le genre ne suffit plus à classifier les variétés compactes orientables et la classe des variétés uniréglées est plus vaste. Nous discuterons des généralisations possibles en dimension trois de l’énoncé de Comessatti à la lumière de plusieurs résultats récents de Kollár, Viterbo, Eliashberg, Huisman, Catanese et moi-même.
Un résultat classique sur les structures o-minimales affirme que tout ensemble définissable est, pour tout entier $k$, une union finie de cellules de classe $C^k$. En fait, la plupart des structures o-minimales connues ont la propriété de décomposition cellulaire analytique. Dans un travail récent en commun avec Olivier Legal (Université de Rennes), nous montrons comment construire, à partir d’algèbres quasianalytiques convenables, une structure o-minimale qui n’admet pas la propriété de décomposition cellulaire $C^{\infty}$.
La mécanique classique nous parvient des équations différentielles sous la forme : $\frac{dX}{dt}=f(X)$, $t\in \mathbb{R}$, $X\in \mathbb R^n$. Normalement, il y a très peu choses qu’on sait dire sur la dynamique globale des solutions $X(t)$ vues comme des courbes réelles dans $\mathbb{R}^n$. L’étude s’enrichit beaucoup quand on complexifie le problème i.e considère $t\in \mathbb{C}$, $X\in \mathbb C^n$. L’approche de Ziglin (1980’s) réduit alors l’analyse des propriétés dynamiques (l’intégrabilité, la stabilité etc.) à l’étude purement algébrique des sous-groupes de $\mathrm{GL}(n,\mathbb{C})$ qui apparaissent comme des groupes de monodromie des équations aux variations autour d’une solution particulière. Dans cette exposé je présente des résultats récents dans cette direction relatives aux problèmes classiques da la mécanique : le problème des trois corps, le Rattleback et le Levitron (une toupie flottant dans le champ magnétique). Quelques démonstrations sont prévues. Références [1] A. Tsygvintsev, On some exceptional cases in the integrability of the three-body problem, Celestial Mechanics and Dynamical Astronomy, Vol. 99, No. 1, 237-247, 2007 [2] H. Dullin, A. Tsygvintsev, On the analytic non-integrability of the Rattleback problem, Annales de la faculté des sciences de Toulouse, à paraître
On établit une formule pour la courbure de Gauss-Bonnet-Chern totale d'un ensemble semi-algébrique fermé X de R^n en fonction de sa caractéristique d'Euler-Poincaré et de son comportement à l'infini.
Nous donnons plusieurs généralisations du théorème suivant de Clarke, (sur l'inversion locale des fonctions lipschitziennes) : soit $f$ une fonction d'un ouvert de $R^n$ dans $R^n$ si l'enveloppe convexe fermée des limites (en un point $x$) des différentielles ne contient pas des matrices singulières alors $f$ est inversible au voisinage de $x$. Nos résultats concernent essentiellement le cas des fonctions définissables dans une structure o-minimale. La preuve du résultat principal utilise quelques notions d'analyse convexe. La généralisation au cas de dimension infinie reste largement ouverte.
Soit X une surface algébrique réelle connexe compacte rationnelle non-singulière. Notons Diff_alg(X) le groupe des difféomorphismes algébriques de X dans X. Le groupe Diff_alg(X) agit diagonalement sur X^n pour tout entier naturel n. Nous montrons que cette action est transitive pour tout n. Comme application, nous donnons une nouvelle preuve plus simple du fait que deux surfaces algébriques réelles connexes compactes rationnelles non-singulières sont algébriquement difféomorphes si et seulement si elles sont homéomorphes en tant que surfaces topologiques.
Nous nous intéressons dans cet exposé au problème suivant : nous considérons une triangulation T_n qui converge au sens de Hausdorff et en normales vers une surface S régulière de classe C^2. Sur chaque triangulation T_n nous considérons une courbe géodésique C_n qui converge vers une courbe C de S. Il est alors naturel de se demander si C est une géodésique de S. Dans le cas où C_n est un plus court chemin, il est connu que C est aussi un plus court chemin. Nous allons montrer que ce résultat ne tient plus si l'on suppose que C_n est une géodésique sans être un plus court chemin. Cependant, en faisant des hypothèses supplémentaires sur la vitesse de convergence des normales et sur les longueurs des arêtes, il est possible de garantir que la courbe limite C est une géodésique. Ce travail peut ensuite s'appliquer à certains schémas de subdivision. Il permet ainsi de valider un algorithme existant de V. Pham-Trong et al. en 2001, qui permet de calculer des géodésiques (qui ne sont pas forcément des plus court chemins) sur une suite de surfaces de subdivision.
Comessatti a démontré qu'une surface rationnelle réelle est soit non orientable, soit difféomorphe à une sphère ou un tore. Réciproquement, si S est une surface non orientable ou difféomorphe à une sphère ou un tore, il existe une surface rationnelle réelle X difféomorphe à S. Dans cet exposé on démontre que si Y est une autre surface rationnelle réelle difféomorphe à S, alors X et Y sont biregulièrement isomorphes. Autrement dit, les surfaces non orientables, la sphère et le tore ont exactement un seul modèle algébrique rationnel réel à isomorphisme birégulier près.
On borne le nombre de points fixes d'un automorphisme d'une courbe algébrique réelle en fonction du genre de la courbe et du nombre de composantes connexes de la partie réelle de la courbe. On utilise cette borne pour calculer l'ordre maximum de certains groupes d'automorphismes de courbes algébriques réelles.