L'algèbre géométrique ou algèbre de Clifford offre un cadre algébrique intuitif pour la représentation d'objets géométriques et leurs transformations géométriques. Cette algèbre est le résultat de la généralisation de l'algèbre de Grassmann et des quaternions de Hamilton. Le développement de son utilisation pour les problèmes en géométrie discrète et en vision par ordinateur est relativement récent. Dans ce contexte, nous nous sommes intéressés à une implantation efficace de l'algèbre géométrique permettant une utilisation dans les espaces vectoriels de hautes dimensions. Nous avons notamment proposé un formalisme récursif de l'algèbre géométrique sur arbres préfixes en montrant que la définition récursive du produit obtenue vérifiait les propriétés de ce produit. Je montrerai les résultats obtenus en termes de complexité algorithmique. Ces résultats nous ont permis de développer la représentation et la transformation de surfaces quadratiques dans un espace vectoriel de haute dimension. Je montrerai les propriétés et les opérations géométriques possibles dans cet algèbre. En parallèle, nous avons montré que cette algèbre pouvait être utilisée en géométrie digitale pour la représentation des transformations digitales et notamment l'approximation de transformations rigides par des transformations digitales définies avec l'algèbre géométrique. Je montrerai enfin l'atout de cette algèbre pour un problème d'optimisation défini sur des nuages de points.
Dans le contexte de la géométrie discrète et du traitement d'image, la grille hexagonale est souvent considérée intéressante, mais difficile à représenter et à utiliser. Par conséquent, cette grille est moins populaire. Dans cet exposé, je passerai en revue le concept de la grille hexagonale dans le contexte de deux applications. La première est liée aux déplacements rigides discrets définis sur des grilles régulières et à la préservation de l'information sous une telle transformation. En effet, en général, les discrétisations de déplacements rigides ne sont pas bijectives. Néanmoins, certaines sont bijectives, et je vais discuter la caractérisation des rotations discrètes qui sont bijectives sur la grille hexagonale. En fin, je vais comparer les distributions des angles dont les rotations discrétisées sont bijectives dans les grilles hexagonale et carrée. Dans la deuxième partie de mon exposé, je me concentrerai sur les utilisations de la grille hexagonale dans l'architecture et la conception de bâtiments. Depuis un certain temps, on savait que les structures construites à partir de panneaux hexagonaux planaires, sont meilleures que les structures triangulaires en termes de stabilité structurelle et de répartition des contraintes physiques. Dans les structures triangulaires, de telles contraintes (par exemple causées par des chutes de neige) s'accumulent aux sommets. Au contraire, dans le cas des structures hexagonales, ces contraintes sont uniformément réparties sur la structure et transmises par les arêtes. Malheureusement, la conception de maillages hexagonaux planaires est un problème très difficile. Dans cet exposé, je vais passer en revue le problème de la conception de tels maillages hexagonaux planaires et décrire un processus automatique pour le remaillage de maillages triangulaires en maillages hexagonaux planaires.
Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate multivalued smooth function $f: R^drightarrow R^{d-n}$. A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation $mathcal{T}$ of the ambient space $R^d$. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine and thick triangulation $mathcal{T}$. This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fr{'e}chet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary.
Je présenterai la notion de sous-groupes convexe-cocompacts du groupe des isométries de l'espace hyperbolique. Ainsi, que plusieurs façons de généraliser cette notion à d'autres groupes. Le but de l'exposé sera d'expliquer pourquoi il n'est pas si simple que cela de trouver la bonne définition de ``sous-groupes convexe-cocompacts''. Une fois la bonne définition donnée et motivée, je présenterai la construction d'exemples de tels sous-groupes via des groupes de réflexions (Travail en commun avec Jeff Danciger, François Guéritaud, Fanny Kassel et Gye-Seon Lee). Les groupes de réflexions sont les images des groupes de Coxeter par des représentations introduites par Vinberg dans les années 60. Ces représentations permettent de faire agir les groupes de Coxeter sur des convexes de l'espace projectif réel. On caractérisera parmi ces représentations, lesquelles fournissent des sous-groupes fortement convexe-cocompacts.
An automata network (AN for short) is a finite digraph where each node holds a state, chosen among a finite set, that evolves in function of the states of its inbound neighbors. Time is discrete and all nodes evolve synchronously and in parallel, similarly to what happens in an cellular automaton. In other terms, the differences between a cellular automaton and an automata network is that the grid'' is an arbitrary finite digraph, and that different nodes may have different update functions. ANs have been used to model neural networks, dynamics of expression and inhibition of genes, distributed algorithms, and more. Although ANs look like a model of computation, they are not Turing-complete, for they lack unbounded memory. Still, they are subject to some kind of
Rice theorems'', i.e., results along the lines of:``any nontrivial property of the function computed by an automata network is computationally hard to test''. In this talk, we will review several results that fit this pattern, as well as pieces of proof that hopefully may be reused in other contexts.
Dans les matériaux métalliques, les phénomènes plastiques s’expliquent grâce à des défauts du réseau cristallin sous-jacent : les dislocations. C’est pourquoi une approche multi-échelle nécessite de comprendre le comportement élémen- taire d’une dislocation. On peut ainsi chercher à caractériser sa forme, sa loi de mobilité, sa propension à engendrer de nouvelles dislocations... Lors de ce séminaire, nous présentons un modèle de dislocations couplant des aspects discrets et continus de la matière (généralisant l’équation classique de Peierls-Nabarro). Il décrit les dislocations en régime stationnaire (i.e. se mouvantà vitesse constante) et repose sur l’équation de Weertman : −(−∆)^(1/2)η + c ∂x η = F'(η) dans R. L’objectif est de caractériser quelques unes des propriétés mathématiques de cette équation intégrodifférentielle non-linéaire et de proposer une stratégie de résolution numérique. Nous conclurons sur une récente extension complètement dynamique de ce modèle.
Le traitement d’images acquises sous éclairement non contrôlé s’avère fréquent dans de nombreuses applications. En effet, différentes conditions d’acquisitions contraignent la prise de vue comme le mouvement, un éclairement non uniforme, les changements d’opacité de l’objet, le bruit d’acquisition,etc... Ceci a pour conséquence de créer des variations inhomogènes de contraste dans les images. Peu de méthodes de traitement d’images prennent en compte ces variations. Afin de résoudre ce problème, un modèle adapté aux images peu contrastées, à savoir le Logarithmic ImageProcessing(LIP) sera présenté(Jourlin, 2016). Ce modèle est fondé sur la loi optique des transmittances, ce qui lui donne de très bonnes propriétés optiques pour traiter ces images. Grâce au modèle LIP, de nouvelles méthodes robustes à ces changements de contrastes seront introduites : à savoir, les métriques fonctionnelles d’Asplund(Noyel and Jourlin, 2020). Deux métriques seront étudiées : (i) la métrique d’Asplund LIP-multiplicative qui est robuste aux changements d’opacité (ou d’absorption) de l’objet modélisés par la loi multiplicative du modèle LIP, et (i) la métrique d’Asplund LIP-additive, qui est robuste aux variations d’intensité lumineuse (ou du temps d’exposition de la caméra) modélisées par la loi additive du modèle LIP. En pratique, ces métriques s’avèrent très utile pour la reconnaissance de forme grâce à des cartes de distances entre un gabarit de référence et une image. Ces cartes de distances d’Asplund seront reliées au corpus bien établi de la morphologie mathématique. Ceci permettra l’introduction d’un nouveau cadre de travail appelé morphologie mathématique logarithmique(Noyel, 2019). Je présenterai également des critères d’homogénéité de région à partir de contrastes logarithmique et qui sont robustes aux variations de contraste et très utiles pour la segmentation(Noyel and Jourlin, 2019). D’autres exemples d’analyses d’images dans de grandes banques de données seront montrés, notamment en imagerie médicale(Noyel et al., 2017) ou en analyse de texture pour les matériaux.
La conjecture de Nivat dit que toute configuration (coloration de la grille Z^2) de faible complexité (qui contient moins de mn motifs rectangulaires de taille mxn) est nécessairement périodique. Autrement dit, il est impossible des créer des configuration non périodique avec trop peu peu de motifs différents. En 2015, Michal Szabados et Jarkko Kari ont présenté une nouvelle manière d'approcher cette conjecture à l'aide d'outils algébriques. En représentant les configurations comme des séries formelles, ils parviennent à exploiter la structure de certains idéaux polynomiaux pour obtenir des résultats se rapprochant beaucoup de la conjecture de Nivat. Dans cet exposé je présenterai leur approche et leurs résultats, ainsi que les travaux que j'ai effectué avec Jarkko Kari dans la continuation de ceux de Michal Szabados. En particulier, je présenterai la preuve (ou au moins les grandes lignes) que la conjecture est vraie dans le cas de certains sous-shifts, ainsi que pour les configurations uniformément récurrentes (c'est à dire celles n'ayant pas de motifs isolés).
La simulation directe du phénomène de propagation des vagues à l'aide des équations d'Euler ou de Navier-Stokes à surface libre est complexe et coûteuse numériquement. Certains phénomène aux grandes échelles sont bien décrit par des modèles opérationnels à dimension réduite comme par exemple les équations de green-Naghdi; toutefois, ce modèle nécessite des techniques plus avancées pour imposer les conditions aux limites. Puisque les problèmes sont posés initialement dans l'espace très large, des conditions aux limites spéciales pour le traitement numérique sur un domaine d’intérêt sont nécessaires. Dans un premier temps, je présenterai des conditions aux limites transparentes dérivées pour les équations de Green-Naghdi linéarisées, et des validations numériques sont proposées. Les tests montrent que des conditions aux limites similaires peuvent s'appliquer pour la simulations d'ondes rentrantes. Dans un deuxième temps, je considérai une technique de relaxation pour un système Green-Naghdi proposé récemment, présentant l'avantage de se mettre sous forme hyperbolique. En particulier, ce formalisme nous permet d'appliquer la technique de Perfectly Matched Layers (PML) pour traiter les ondes sortantes et rentrantes. Ce travail est commun avec Pascal Noble.
Je présente un travail récent en commun avec A. Aizenbud, continuant le travail avec Halupczok, Loeser et Raibaut sur les distributions p-adiques et motiviques. J'explique notre réponse à une question posée par Drinfeld et Aizenbud. Celle-ci utilise la résolution de singularités, la théorie de modèles, l'intégration motivique (et p-adique, uniforme en p) et la transformation de Fourier. J'explique les questions ouvertes pour généraliser tout ceci vers un cadre motivique au lieu de p-adique.
In this talk, I'll investigate the stability of three models of systems. In the first and the second models, a Euler-Bernoulli beam and a wave equations coupled via boundary connections is considered. The localized non-smooth fractional Kelvin-Voigt damping acts through one of the two equations only, its effect is transmitted to the other equation through the coupling by boundary connections. In these two models, we reformulate the system into an augmented model and using a general criteria of Arendt-Batty, we show that the system is strongly stable. For the first model, where the dissipation acts through the wave equation, by using frequency domain approach, combined with multiplier technique we prove that the energy decays polynomially with rate t^{frac{-4}{2- α }} . For the second model, the dissipation acts through the beam equation. We prove using the same technique as for the first model combined with some interpolation inequalities and by solving ordinary differential equations of order 4, that the energy has a polynomial decay rate of type t^{frac{−2}{ 2−α}} . Finally, in the third model, we consider an Euler-Bernoulli beam with a localized non-regular fractional Kelvin-Voigt damping. We show that the energy has a polynomial decay rate of type t^{frac{−2}{1−α}} , where α ∈ (0,1).
Dans cet exposé, nous présenterons plusieurs résultats concernant un problème d’optimisation en écologie spatiale et qui peut se formuler ainsi: comment, au sein d’un domaine, répartir les ressources accessibles à une population afin de garantir que cette dernière soit de taille maximale? Nous nous concentrerons sur les propriétés qualitatives de ce problème. Nous mettrons en évidence, entre autre, des propriétés de type concentration/fragmentation des ressources: vaut-il mieux répartir le plus possible les ressources ou, au contraire, les concentrer en un unique endroit? Contrairement à plusieurs critères mieux connus (comme la capacité de survie), où la concentration de ressources est toujours favorable, et ce indépendamment de la vitesse de déplacement des individus, pour la taille de la population, nous montrons que, plus cette vitesse de déplacement est faible, plus la fragmentation est un atout. La première partie de l’exposé sera essentiellement descriptive, et nous donnerons des éléments de preuve dans la seconde. Les différents travaux qui seront présentés ont été réalisés en collaboration avec G. Nadin, Y. Privat et D. Ruiz-Balet.
Soit Omega inclus dans R^n, un ensemble de mesure finie tel que pour un rayon r (inférieur au diamètre), le volume de l'intersection de Omega avec toute boule de rayon r centrée en un point du bord est constant. Nous démontrons que Omega doit être une boule s'il est ouvert et connexe, ou s'il est mesurable de périmètre fini et indécomposable. Dans le cas le plus général, sous une hypothèse qui remplace la connexité/indécomposabilité, un ensemble mesurable satisfaisant cette propriété doit etre une réunion de boules identiques. La preuve est basée sur une réinterprétation de la méthode des hyperplans mobiles d'Alexandrov-Serrin dans le contexte d'ensembles mesurables. En effet, ce résultat peut-etre vu comme un théorème de rigidité à la Alexandrov pour des ensembles mesurables à courbure moyenne non locale constante. Travail en collaboration avec I. Fragalà (Milan).
First, we consider a system of two wave equations coupled by velocities in one-dimensional space with one boundary fractional damping and we prove that the energy of our system decays polynomially with different rates. Second, we investigate the stabilization of a locally coupled wave equations with only one internal viscoelastic damping of Kelvin-Voigt type and we prove that the energy of our system decays polynomially with rate 1/t. Finally, we investigate the stabilization of a locally coupled wave equations with local viscoelastic damping of past history type acting only in one equation via non smooth coefficients and we establish the exponential stability of the solution if and only if the two waves have the same speed of propagation. In case of different speed propagation, we prove that the energy of our system decays polynomially with rate 1/t.
Le groupe de Grothendieck des variétés est le quotient du groupe abélien libre sur les classes d'isomorphismes de variétés algébriques par des relations qui permettent de découper une variété en une sous-variété et son complémentaire. Il a également une structure d'anneau provenant du produit de variétés. De nombreux résultats de théorie des nombres ont des analogues, dits motiviques, qui peuvent être formulés dans cet anneau et qui sont de nature plus géométrique. Nous allons présenter un résultat obtenu en collaboration avec Sean Howe, qui est un analogue motivique d'un célèbre théorème de Poonen; il s'agit de comprendre la probabilité qu'un polynôme homogène à n variables satisfasse certaines conditions sur son développement de Taylor en tout point, lorsque le degré tend vers l'infini. Un outil essentiel est l'introduction d'une notion de produit eulérien motivique pour écrire la valeur de la probabilité limite.
The lake equations arise as a geophysical model for the description of shallow water. The system is introduced as a 2D model for the vertically averaged horizontal component of a 3D incompressible fluid. A lake is characterised by a 2D domain and a non-negative topography function. The 2D velocity satisfies an anelastic constraint rather than a divergence-free condition. The equations are degenerate if the topography may vanish. More precisely, velocity and vorticity are then related through degenerate elliptic problems. In this talk, we discuss the stability of the lake equations for singular geometries and degenerated topographies. Specifically, we prove stability results for two scenarios: First, motivated by natural phenomena such as flooding or erosion we consider a sequence of lakes with an island that disappears. In addition, we highlight crucial differences to the incompressible 2D Euler equations (flat topography). Second, we address the stability of the equations for a sequence of lakes for which an island appears in the limit, e.g. due to a decreasing level of water. This is joint work with C. Lacave and E. Miot.
It is well known that two generic quadric surfaces intersect in a nonsingular quartic space curve, but when the intersection is not transverse this intersection curve may degenerate to a finite number of different possible types of singular curves. In the nice paper by Farouki et al. (1989), the authors formulate a way of computing the condition for a degenerate intersection in this case, which refines in the real case and with an algorithmic point of view a classical treatise by Bromwich (1906). Independently, Schläfli (1953) studied the degenerate intersection of two hypersurfaces described by multilinear equations. In joint work with S. di Rocco and R. Morrison, we present a general framework of iterated sparse discriminants to characterize the singular intersection of hypersurfaces with a given monomial support A, which generalizes both previous situations. We study the connection of iterated discriminants with the notion of mixed discriminant and the singularities of the sparse discriminant associated to A.
Les fonctions E sont des séries entières à coefficients algébriques qui satisfont à une équation différentielle et à certaines conditions de croissance ; elles ont été introduites par Siegel dans un article révolutionnaire de 1929 avec le but de généraliser les théorèmes de transcendance pour les valeurs de la fonction exponentielle. Outre l’exponentielle, des exemples incluent les fonctions de Bessel et une riche famille de séries hypergéométriques. Siegel a posé la question : est-ce que toute fonction E peut s’écrire comme une expression polynomiale en des fonctions hypergéométriques ? Dans un travail récent, Fischler et Rivoal montrent qu’une réponse positive à cette question contredirait une forme de la conjecture de périodes de Grothendieck. Dans l'exposé je décrirai une approche inconditionnelle basée sur la théorie de Galois différentielle. Il s’agit d’un travail en commun avec Peter Jossen.
In the last years, measure solutions to PDE, in particular those modeling populations, have drawn much attention. The talk will be devoted to the presentation of a recent, unusual result in this field, that we obtained with Pierre Gabriel. First, I will expose some wellposedness and asymptotic results for two famous population equations in the L^p and measure frameworks, and explain the critical case that interested us. Then, I will define the notion of solution we used, and if needed, recall some basic definitions about semigroups. Moving to the proof itself, I will present the main steps of the proof of the wellposedness of the problem, that relies on a duality relation used to build a solution expressed as a semigroup acting on an initial measure. Then, I will go a little more into details of the demonstration of the asymptotic behaviour. In particular, I will exhibit how we used Harris' ergodic theorem to obtain a uniform exponential convergence in (weighted) total variation norm toward an oscillating measure.
The equations of motion for compressible (barotropic) fluids have the structure of a simple conservative dynamical system when expressed in Lagrangian variables. This can be exposed interpreting the Lagrangian flow as a curve of vector-valued L2 functions, and the internal energy of the fluid as a functional on the same space. Particle methods are a natural discretization strategy in this setting, since in this case the flow is discretized using piecewise constant functions on a given partition of the domain, but they require some form of regularization to define the internal energy of the fluid. In this talk I will describe a particle method in which the internal energy is replaced by its Moreau-Yosida regularization in the L2 space, which can be efficiently computed as a semi-discrete optimal transport problem. I will also show how the convexity of the energy in the Eulerian variables can be exploited in the non-convex Lagrangian setting to prove quantitative convergence estimates towards smooth solution of this problem, and how this result generalizes to dissipative porous media flow.