Séminaires de l'année


Lien ical.

Antoine Ducros, Institut Mathématiques de Jussieu, Paris. 2:00:00 14 octobre 2021 17:00 geo
Aplatissement par éclatements en géométrie de Berkovich
Abstract

Dans un article célèbre, Raynaud et Gruson ont développé une technique d'aplatissement par éclatements dans en géométrie algébrique (à la Grothendieck). Je commencerai par rappeler leurs résultats, puis expliquerai comment mettre en œuvre ce type de méthode dans le cadre des espaces de Berkovich, et les difficultés à surmonter. Je donnerai aussi quelques applications, et notamment une interprétation géométrique d'un résultat d'élimination des quantificateurs dans les corps valués algébriquement clos avec fonctions analytiques dû à Cluckers et Lipshitz.

Jean-Philippe Rolin, Institut de Mathématiques de Bourgogne. 2:00:00 23 septembre 2021 16:00 geo
Amalgamating Gamma and zeta
Abstract

In view of recent applications of o-mininality to number theory and algebraic geometry, it is natural to reflect on the possible definability of important functions such as Euler's Gamma function and Riemann's zeta function. While none of these two functions is definable in the classical structures mainly used in applications, we show that they are definable in a common o-minimal expansion of the real field. The construction of this new structure is based on an appropriate version of Borel-Laplace summation theory. Joint work with T. Servi and P. Speissegger.

Amine El Sahili, Université libanaise. 2:00:00 23 septembre 2021 10:00 limd
Un parcours à travers les tournois
Abstract

Un tournoi est un graphe orienté complet dans le sens où tous deux sommets sont liés par un arc. Ceci donne aux tournois un sens anarchique, cependant, l'étude que nous présentons sur l'existence de quelques modèles bien ordonnés dans les tournois va changer complètement la situation. Nous allons en apprendre que les tournois, définis d'une manière presque chaotique, sont des architectures impressionnantes structurées suivant des règles bien précises. Nous étudions l'existence des chemins, cycles et arbres dans les tournois, Nous nous intéressons aussi au nombre d'un certain type dans les tournois: la parité, et des liens avec les tournois complémentaires.

Frank Sottile, Texas A&M University. 2:00:00 1 juillet 2021 17:00 geo
Euclidean Distance Degree via Mixed Volume
Abstract

The Euclidean distance degree (EDD) of a variety X in R^n measures the algebraic complexity of computing the point of X closest to a general point u in R^n. It is the number of critical points of the complexified distance function from u to X. Known formulas involve polar classes of the conormal variety to X or Chern classes of X. In this talk, I will discuss formulas of a different character, when X is a hypersurface whose defining equation is general given its Newton polytope. In this case, the EDD is shown to be the mixed volume of the critical point equations. This uses Bernstein's Other Theorem, which is of independent interest. We give an interesting closed formula for the EDD when the Newton polytope is a rectangular parallelepiped. This is joint work with Paul Breiding and James Woodcock.

Sylvain Rideau-Kikuchi, IMJ, Paris. 2:00:00 24 juin 2021 17:00 geo
H-minimalité
Abstract

Dans cet exposé je définirais une nouvelle notion de minimalité, la h-minimalité, pour les corps henséliens de caractéristique nulle qui généralise les autres notions de minimalité pour les corps valués (C, P, V…) et ne restreint pas, contrairement aux notions précédentes, les corps résiduels et groupes de valeurs possibles. Cette notion est définie, par analogie avec l’o-minimalité, par le fait que les ensembles définissables sont contrôlés par un nombre fini de points. Contrairement à l’o-minimalité, il faut porter une attention particulière aux paramètres de définition des ensembles définissables, ce qui nous amène à définir toute une famille de notions de h-minimalité. Dans un second temps, j’exposerai les conséquences de la h-minimalité, dont la propriété du jacobien qui joue un rôle central dans le développement de l’intégration motivique, mais aussi des variantes en degré et dimensions supérieures. (travail en commun avec R. Cluckers, I. Halupczok et F. Vermeulen)

Tomáš Vavra, University of Waterloo. 2:00:00 24 juin 2021 10:00 limd
Periodicity and finiteness in number systems with algebraic base
Abstract

Abstract: We study periodic expansions in positional number systems. In particular, for a complex number $alpha$ we prove that there exists a finite set $D$ such that every element of $mathbb Q(alpha)$ can be represented by an eventually periodic expansion with the base $alpha$ and digits in $D$. Through a connection with the so-called spectra of numbers we will be also able to decide whether the expansion are finite on the ring $mathbb Z[alpha]$. As an application of these results, we will show that we can classify totally complex quartic fields whose integers can be expressed as sums of distinct units.

Simon Baker, University of 4a02b7d2-a9c9-4c2e-b00b-d54108026779Birmingham. 2:00:00 10 juin 2021 10:00 limd
Complexity results for beta expansions
Abstract

Beta expansions are well known generalisations of the familiar integer base representations of real numbers. Importantly a real number x often has many beta expansions. As such, it is natural to ask whether a real number x has a beta expansion that satisfies a certain additional property. Properties we are interested in may relate to digit frequencies, complexity, etc. In this talk I will survey a number of results in this direction and provide a flavour of their proofs. I will also pose some open questions.

Gladys Narbona Reina, Univ Sevilla. 2:00:00 4 juin 2021 14:00 edp
On the sediment transport modelling through depth-averaged models
Abstract

In this talk I will present some of the works developed with the aim to obtain a relevant mathematical model for (mainly) the bedload sediment transport. This problem is classically approximated by the Saint-Venant-Exner system but it has some drawbacks: the mass conservation is not ensured, the gravitational effects are not originally included and the system does not have an associated energy balance. In the first part I will show how we obtained a Saint-Venant-Exner type model from a formal asymptotic derivation that resolves these inconveniences. In a second work the bedload problem is tackled with a ``classical'' bilayer shallow model that serves to any flow regime, weak or strong, with the particularity of converging to the previous SVE problem for the slow regime. This model presents also an advantage from a numerical point of view since the gravitational effects are naturally included in the system. These works have been developed in collaboration with E. Fernández-Nieto, T. Morales and C. Escalante.

Marielle Simon, Inria (Lille). 2:00:00 28 mai 2021 14:00 edp
Limites hydrodynamiques pour un processus d'exclusion facilité
Abstract

L'exposé sera dédié à l'étude d'un système de particules en interaction dont la dynamique est purement stochastique (markovienne), et qui appartient à la famille des processus d'exclusion (i.e. une seule particule autorisée sur chaque site du réseau) avec contraintes cinétiques. Ces contraintes microscopiques sur la dynamique stochastique provoquent une transition de phase vers un état totalement ``absorbant'', lorsque la densité de particules atteint une certaine valeur critique. De plus, le comportement macroscopique de ce système, obtenu après une limite hydrodynamique dans une échelle de temps diffusive, est décrit par une EDP déterministe qui appartient à la famille des problèmes à frontière libre, ou problèmes de Stefan. Ce travail est en collaboration avec O. Blondel, C. Erignoux and M. Sasada et repose sur deux récentes publications.

Haidar Badawi, Univ Polytechnique Hauts-de-France. 2:00:00 21 mai 2021 14:00 edp
Stability results of a singular local interaction elastic/viscoelastic coupled wave equations with time delay
Abstract

The purpose of this paper is to investigate the stabilization of a locally coupled wave equations with non smooth localized viscoelastic damping of Kelvin-Voigt type and localized time delay. Using a general criteria of Arendt-Batty, we show the strong stability of our system in the absence of the compactness of the resolvent. Finally, using frequency domain approach combined with the multiplier method, we prove a polynomial energy decay rate of order 1/t.

Aurélie Lagoutte, Université de Clermont. 2:00:00 15 avril 2021 10:00 limd
Clique-Stable set Separation in graphs
Abstract

Consider the following Communication Complexity problem: Alice is given a clique K, Bob is given a stable set S, and they have to decide via a non-deterministic protocol whether K intersects S or not. A certificate for the non-intersection is a bipartition of the vertices such that K is included in one side, and S is included in the other side. A Clique-Stable set Separator is a set of certificates which contains at least one suitable certificate for each input (K,S). Given a class of graphs, the goal is to know whether there exists, for every graph of the class, a Clique-Stable set Separator with only polynomially many certificates. This question, originally restricted to the case of perfect graphs, occurred to Yannakakis when studying extended formulations of the Stable set Polytope (a polytope P has a small extended formulation if it is the projection of a polytope Q lying in a higher dimensional space, with a small number of facets). A result by Göös provides a super-polynomial lower bound for the class of all graphs, but the case of perfect graphs is still open. We use different techniques to prove that a polynomial Clique-Stable set separator exists in restricted classes of graphs: probabilistic arguments for random graphs, VC-dimension for graphs where a split graph H is forbidden, and structural arguments for some other classes. We moreover highlight strong links between the Clique-Stable set Separation and other problems, including some Constraint Satisfaction Problems.

Stephane Breuils, National Institute of Informatics, Tokyo. 2:00:00 8 avril 2021 10:00 limd
Structure algorithmique pour l'algebre geometrique: application en geometrie digitale et en representation de surfaces
Abstract

L'algèbre géométrique ou algèbre de Clifford offre un cadre algébrique intuitif pour la représentation d'objets géométriques et leurs transformations géométriques. Cette algèbre est le résultat de la généralisation de l'algèbre de Grassmann et des quaternions de Hamilton. Le développement de son utilisation pour les problèmes en géométrie discrète et en vision par ordinateur est relativement récent. Dans ce contexte, nous nous sommes intéressés à une implantation efficace de l'algèbre géométrique permettant une utilisation dans les espaces vectoriels de hautes dimensions. Nous avons notamment proposé un formalisme récursif de l'algèbre géométrique sur arbres préfixes en montrant que la définition récursive du produit obtenue vérifiait les propriétés de ce produit. Je montrerai les résultats obtenus en termes de complexité algorithmique. Ces résultats nous ont permis de développer la représentation et la transformation de surfaces quadratiques dans un espace vectoriel de haute dimension. Je montrerai les propriétés et les opérations géométriques possibles dans cet algèbre. En parallèle, nous avons montré que cette algèbre pouvait être utilisée en géométrie digitale pour la représentation des transformations digitales et notamment l'approximation de transformations rigides par des transformations digitales définies avec l'algèbre géométrique. Je montrerai enfin l'atout de cette algèbre pour un problème d'optimisation défini sur des nuages de points.

Kacper Pluta, The Technion - Israel Institute of Technology.. 2:00:00 1 avril 2021 10:00 limd
La grille hexagonale : moins populaire mais néanmoins utile
Abstract

Dans le contexte de la géométrie discrète et du traitement d'image, la grille hexagonale est souvent considérée intéressante, mais difficile à représenter et à utiliser. Par conséquent, cette grille est moins populaire. Dans cet exposé, je passerai en revue le concept de la grille hexagonale dans le contexte de deux applications. La première est liée aux déplacements rigides discrets définis sur des grilles régulières et à la préservation de l'information sous une telle transformation. En effet, en général, les discrétisations de déplacements rigides ne sont pas bijectives. Néanmoins, certaines sont bijectives, et je vais discuter la caractérisation des rotations discrètes qui sont bijectives sur la grille hexagonale. En fin, je vais comparer les distributions des angles dont les rotations discrétisées sont bijectives dans les grilles hexagonale et carrée. Dans la deuxième partie de mon exposé, je me concentrerai sur les utilisations de la grille hexagonale dans l'architecture et la conception de bâtiments. Depuis un certain temps, on savait que les structures construites à partir de panneaux hexagonaux planaires, sont meilleures que les structures triangulaires en termes de stabilité structurelle et de répartition des contraintes physiques. Dans les structures triangulaires, de telles contraintes (par exemple causées par des chutes de neige) s'accumulent aux sommets. Au contraire, dans le cas des structures hexagonales, ces contraintes sont uniformément réparties sur la structure et transmises par les arêtes. Malheureusement, la conception de maillages hexagonaux planaires est un problème très difficile. Dans cet exposé, je vais passer en revue le problème de la conception de tels maillages hexagonaux planaires et décrire un processus automatique pour le remaillage de maillages triangulaires en maillages hexagonaux planaires.

Mathijs Wintraecken, Inria Sofia Antipolis. 2:00:00 25 mars 2021 10:00 limd
Topologically correct PL-approximations of isomanifolds
Abstract

Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate multivalued smooth function $f: R^drightarrow R^{d-n}$. A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation $mathcal{T}$ of the ambient space $R^d$. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine and thick triangulation $mathcal{T}$. This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fr{'e}chet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary.

Ludovic Marquis, IRMAR (Rennes). 2:00:00 18 mars 2021 16:00 geo
Groupes de réflexions fortement convexe-cocompacts
Abstract

Je présenterai la notion de sous-groupes convexe-cocompacts du groupe des isométries de l'espace hyperbolique. Ainsi, que plusieurs façons de généraliser cette notion à d'autres groupes. Le but de l'exposé sera d'expliquer pourquoi il n'est pas si simple que cela de trouver la bonne définition de ``sous-groupes convexe-cocompacts''. Une fois la bonne définition donnée et motivée, je présenterai la construction d'exemples de tels sous-groupes via des groupes de réflexions (Travail en commun avec Jeff Danciger, François Guéritaud, Fanny Kassel et Gye-Seon Lee). Les groupes de réflexions sont les images des groupes de Coxeter par des représentations introduites par Vinberg dans les années 60. Ces représentations permettent de faire agir les groupes de Coxeter sur des convexes de l'espace projectif réel. On caractérisera parmi ces représentations, lesquelles fournissent des sous-groupes fortement convexe-cocompacts.

Guilhem Gamard, Luminy. 2:00:00 11 mars 2021 10:00 limd
Rice-like theorems for automata networks
Abstract

An automata network (AN for short) is a finite digraph where each node holds a state, chosen among a finite set, that evolves in function of the states of its inbound neighbors. Time is discrete and all nodes evolve synchronously and in parallel, similarly to what happens in an cellular automaton. In other terms, the differences between a cellular automaton and an automata network is that the grid'' is an arbitrary finite digraph, and that different nodes may have different update functions. ANs have been used to model neural networks, dynamics of expression and inhibition of genes, distributed algorithms, and more. Although ANs look like a model of computation, they are not Turing-complete, for they lack unbounded memory. Still, they are subject to some kind ofRice theorems'', i.e., results along the lines of:``any nontrivial property of the function computed by an automata network is computationally hard to test''. In this talk, we will review several results that fit this pattern, as well as pieces of proof that hopefully may be reused in other contexts.

Marc Josien, CEA, Cadarache. 2:00:00 5 mars 2021 14:00 edp
Résolution numérique d’équations intégodifférentielles pour la dynamique des dislocations
Abstract

Dans les matériaux métalliques, les phénomènes plastiques s’expliquent grâce à des défauts du réseau cristallin sous-jacent : les dislocations. C’est pourquoi une approche multi-échelle nécessite de comprendre le comportement élémen- taire d’une dislocation. On peut ainsi chercher à caractériser sa forme, sa loi de mobilité, sa propension à engendrer de nouvelles dislocations... Lors de ce séminaire, nous présentons un modèle de dislocations couplant des aspects discrets et continus de la matière (généralisant l’équation classique de Peierls-Nabarro). Il décrit les dislocations en régime stationnaire (i.e. se mouvantà vitesse constante) et repose sur l’équation de Weertman : −(−∆)^(1/2)η + c ∂x η = F'(η) dans R. L’objectif est de caractériser quelques unes des propriétés mathématiques de cette équation intégrodifférentielle non-linéaire et de proposer une stratégie de résolution numérique. Nous conclurons sur une récente extension complètement dynamique de ce modèle.

Guillaume Noyel, Lyon. 2:00:00 4 mars 2021 10:00 limd
Traitement morphologique et logarithmique d’images acquises sous éclairement variable
Abstract

Le traitement d’images acquises sous éclairement non contrôlé s’avère fréquent dans de nombreuses applications. En effet, différentes conditions d’acquisitions contraignent la prise de vue comme le mouvement, un éclairement non uniforme, les changements d’opacité de l’objet, le bruit d’acquisition,etc... Ceci a pour conséquence de créer des variations inhomogènes de contraste dans les images. Peu de méthodes de traitement d’images prennent en compte ces variations. Afin de résoudre ce problème, un modèle adapté aux images peu contrastées, à savoir le Logarithmic ImageProcessing(LIP) sera présenté(Jourlin, 2016). Ce modèle est fondé sur la loi optique des transmittances, ce qui lui donne de très bonnes propriétés optiques pour traiter ces images. Grâce au modèle LIP, de nouvelles méthodes robustes à ces changements de contrastes seront introduites : à savoir, les métriques fonctionnelles d’Asplund(Noyel and Jourlin, 2020). Deux métriques seront étudiées : (i) la métrique d’Asplund LIP-multiplicative qui est robuste aux changements d’opacité (ou d’absorption) de l’objet modélisés par la loi multiplicative du modèle LIP, et (i) la métrique d’Asplund LIP-additive, qui est robuste aux variations d’intensité lumineuse (ou du temps d’exposition de la caméra) modélisées par la loi additive du modèle LIP. En pratique, ces métriques s’avèrent très utile pour la reconnaissance de forme grâce à des cartes de distances entre un gabarit de référence et une image. Ces cartes de distances d’Asplund seront reliées au corpus bien établi de la morphologie mathématique. Ceci permettra l’introduction d’un nouveau cadre de travail appelé morphologie mathématique logarithmique(Noyel, 2019). Je présenterai également des critères d’homogénéité de région à partir de contrastes logarithmique et qui sont robustes aux variations de contraste et très utiles pour la segmentation(Noyel and Jourlin, 2019). D’autres exemples d’analyses d’images dans de grandes banques de données seront montrés, notamment en imagerie médicale(Noyel et al., 2017) ou en analyse de texture pour les matériaux.

Étienne Moutot, Luminy. 2:00:00 25 février 2021 10:00 limd
Outils algébriques et conjecture de Nivat
Abstract

La conjecture de Nivat dit que toute configuration (coloration de la grille Z^2) de faible complexité (qui contient moins de mn motifs rectangulaires de taille mxn) est nécessairement périodique. Autrement dit, il est impossible des créer des configuration non périodique avec trop peu peu de motifs différents. En 2015, Michal Szabados et Jarkko Kari ont présenté une nouvelle manière d'approcher cette conjecture à l'aide d'outils algébriques. En représentant les configurations comme des séries formelles, ils parviennent à exploiter la structure de certains idéaux polynomiaux pour obtenir des résultats se rapprochant beaucoup de la conjecture de Nivat. Dans cet exposé je présenterai leur approche et leurs résultats, ainsi que les travaux que j'ai effectué avec Jarkko Kari dans la continuation de ceux de Michal Szabados. En particulier, je présenterai la preuve (ou au moins les grandes lignes) que la conjecture est vraie dans le cas de certains sous-shifts, ainsi que pour les configurations uniformément récurrentes (c'est à dire celles n'ayant pas de motifs isolés).

Maria Kazakova, INSA Rouen. 2:00:00 12 février 2021 14:00 edp
Conditions aux limites transparentes pour équations de Green-Naghdi linéarisées.
Abstract

La simulation directe du phénomène de propagation des vagues à l'aide des équations d'Euler ou de Navier-Stokes à surface libre est complexe et coûteuse numériquement. Certains phénomène aux grandes échelles sont bien décrit par des modèles opérationnels à dimension réduite comme par exemple les équations de green-Naghdi; toutefois, ce modèle nécessite des techniques plus avancées pour imposer les conditions aux limites. Puisque les problèmes sont posés initialement dans l'espace très large, des conditions aux limites spéciales pour le traitement numérique sur un domaine d’intérêt sont nécessaires. Dans un premier temps, je présenterai des conditions aux limites transparentes dérivées pour les équations de Green-Naghdi linéarisées, et des validations numériques sont proposées. Les tests montrent que des conditions aux limites similaires peuvent s'appliquer pour la simulations d'ondes rentrantes. Dans un deuxième temps, je considérai une technique de relaxation pour un système Green-Naghdi proposé récemment, présentant l'avantage de se mettre sous forme hyperbolique. En particulier, ce formalisme nous permet d'appliquer la technique de Perfectly Matched Layers (PML) pour traiter les ondes sortantes et rentrantes. Ce travail est commun avec Pascal Noble.