Séminaires de l'année


Lien ical.

Mathilde Legrand, MAPMO, Université d'Orléans. 2:00:00 13 mars 2015 14:00 edp
Un modèle de Saint Venant étendu avec couche visqueuse
Abstract

Le modèle de Saint Venant (Shallow Water) est largement utilisé depuis son introduction en 1871 pour modéliser des écoulements dont la hauteur est faible en vis-à-vis de la longueur. Il est obtenu en intégrant les équations de conservation de la masse et de la quantité de mouvement sur toute la hauteur d'eau. Sa forme traditionnelle repose sur l'approximation de fluide parfait, bien que des termes de friction soient ajoutés afin de prendre en compte la viscosité du fluide. Nous allons adopter la même stratégie d'une moyenne sur la hauteur d'eau mais elle sera couplée avec une fine couche visqueuse. De cette façon, le terme de friction apparaîtra naturellement dans le modèle intégré. Il sera cependant contrebalancé par un terme de pression modifiée. Ce modèle possède de bonnes propriétés pour le frottement, notamment que son maximum soit placé avant le sommet d'une bosse sur fond plat. Ce phénomène naturel était absent du modèle de Saint Venant.

Ilia Itenberg, Institut mathématiques de Jussieu. 2:00:00 13 mars 2015 10:00 geo
TBA, TBA. 2:00:00 12 mars 2015 10:30 limd
Angel Duran, Department of Applied Mathematics University of Valladolid Spain. 2:00:00 6 mars 2015 14:00 edp
On evolutionary integral models for image restoration
Abstract

In this talk we analyze evolutionary integral based methods for image restoration. In these models, the image evolves according to Volterra type equations and the diffusion is controlled by a convolution kernel. The discussion will involve well-posedness, scale-space properties and long-term behaviour in the continuous and discrete cases, and will include some numerical experiments to illustrate the performance of the models in image denoising and contour detection.

Rodolphe Lepigre et Christophe Raffalli, LAMA. 2:00:00 5 mars 2015 10:00 limd
Mêler combinateurs, continuations et EBNF pour une analyse syntaxique efficace en OCaml
Abstract

Partie I (Rodolphe Lepigre) : Le développement de Patoline (un nouveau système de composition de documents) nécessite un parseur extensible d'OCaml sans contrainte, notamment sur l'analyse lexicale. Nous présentons ici un environnement de développement léger pour l'analyse syntaxique, conçu en deux mois pendant l'été 2014 pour répondre à ce besoin. Le système propose une syntaxe intuitive de type BNF, sans récursion à gauche. Les parseurs sont traduits vers des expressions OCaml utilisant DeCaP, notre bibliothèque de combinateurs monadiques, et sont donc des expressions de première classe. Pour optimiser les combinateurs, nous utilisons des continuations et une méthode de prédiction des premiers caractères acceptés par une grammaire. Sur la grammaire d'OCaml, on obtient en moyenne une analyse cinq fois plus lente qu'avec le parseur d'origine et deux fois plus rapide qu'avec Camlp4. De plus, on dispose de combinateurs inspirés de la notion de continuation délimitée pour optimiser les grammaires. Notons que nous gérons aussi les grammaires ambigües. Partie II (Christophe Raffalli) : Parser combinators are popular among functional programmers because they can be used to define languages parameterised by other languages and benefit from the strong type systems of the host language. Parser combinators have the reputation of being slow... However, with a few improvement, they become no more than five to ten times slower than stack automaton. It is easy to translate a BNF-like syntax into calls to combinators while keeping there advantages. However one main drawback remains: left recursion is forbidden. Although left recursion can easily be eliminated from a context free grammar, the presence of parametrised grammars requires more: a fixpoint combinator compatible with left recursion.

Andrea Frosini, Università degli Studi di Firenze. 2:00:00 26 février 2015 10:00 limd
Pattern avoiding polyominoes
Abstract

The concept of pattern within a combinatorial structure is an essential notion in combinatorics, whose study has had many developments in various branches of discrete mathematics. Among them, the research on permutation patterns and pattern-avoiding permutations has become very active. Nowadays, these researches have being developed in several other directions, one of them concerning the definition and the study of an analogue concept in other combinatorial objects. Some recent studies are presented here, concerning patterns in bidimensional structure, and, specifically, inside polyominoes. After introducing polyomino classes, I present an original way of characterizing them by avoidance constraints (namely, with excluded submatrices) and I discuss how canonical such a description by submatrix-avoidance can be. I also provide some examples of polyomino classes defined by submatrix-avoidance, and I conclude with some hints for future research on the topic.

Clotilde Fermanian, Université Paris Est - Créteil Val de Marne. 2:00:00 12 février 2015 14:00 labo
Clément Mouhot, Univ. Cambridge. 2:00:00 6 février 2015 14:00 edp
Stabilité exponentielle de solutions à décroissance faible pour Fokker-Planck
Abstract

Nous présentons un travail avec Mischler où nous développons et appliquons notre théorie de factorisation d'opérateurs aux équations de Fokker-Planck cinétiques (en espace et vitesse), avec confinement par périodicité ou par un potentiel extérieur. En particulier nous obtenons différents résultats de stabilité nouveaux pour des solutions avec décroissance polynômiale et dans des topologies faibles.

TBA, TBA. 2:00:00 5 février 2015 10:30 limd
Benoit Mesognon, Département de Mathématiques et Applications (DMA) de l'Ecole Normale Supérieure. 2:00:00 30 janvier 2015 14:00 edp
Existence en temps long pour l'équation des Water-Waves avec grande topographie
Abstract

Comment démontrer que l'équation des Water-Waves est bien posée en temps long si on ne fait aucune hypothèse de petitesse sur la topographie ? Après avoir expliqué comment on peut démontrer un tel résultat sur un modèle plus simple (l'équation Shallow Water), on présente l'adaptation de la méthode au cas des Water-Waves.

Jean-Louis Verger-Gaugry, LAMA. 2:00:00 29 janvier 2015 14:00 limd
Problème de Lehmer et fonctions zeta dynamiques limites
Abstract

En 1933 Lehmer enonce le problème suivant : existe-t-il une constante c > 0 telle que la mesure de Mahler M(α) de tout nombre algébrique α non nul et différent d’une racine de l’unité vérifie M(α) ≥ 1 + c. La Conjecture de Lehmer affirme que oui (C. Smyth, ”Survey”, 2014). Pour la tester de nombreuses familles de nombres algébriques tendant vers 1 ont été considérées. Il s'agit d’un problème limite et de minoration de M (ou de la hauteur pour des courbes elliptiques ou des variétés Abéliennes). Un autre problème limite ouvert est de caractériser le premier dérivé de l'ensemble des nombres de Salem T. Une première conjecture de Boyd dit que la réunion S ∪ T des ensembles des nombres de Pisot et de Salem est fermé. Une deuxième conjecture de Boyd affirme que le premier dérivé de l'ensemble des nombres de Salem est l'ensemble des nombres de Pisot. A chaque nombre algébrique réel β > 1 on peut souvent associer trois fonctions zeta dynamiques : (i) la fonction zeta d’Artin-Mazur de la beta-transformation ζ_β(z), qui provient du système dynamique de numération de Rényi-Parry, la base ́étant β; (ii) pour un polynôme P de petit hauteur s’annulant sur β, la fonction zeta de Lefshetz ζ_{L,β,P}(z), qui provient d’un automorphisme du tore n-dimensionnel, où n = deg P, et (iii) la fonction zeta d’Artin-Mazur ζ{AM,β,P}(z), qui provient de la même action sur le tore n-dimensionnel. Si (β_i) est une suite convergente de nombres algebriques, une question fondamentale est de savoir si les fonctions zeta limites peuvent apporter des solutions ou un éclairage nouveau sur ces questions ; par exemple, caractériser la limite des ensembles de pôles des fonctions ζ_{β_i}(z) lorsque i tend vers l'infini. En effet, le contrôle de la hauteur peut donner lieu à des phénomènes d'équidistribution limite de conjugués sur le cercle unité (Bilu, Petsche, Pritsker). On prendra l'exemple d'une famille F de nombres de Perron, qui tendent vers 1, racines dominantes de trinômes de hauteur 1 non réciproques, et de petite mesure de Mahler. On montrera que les développements asymptotiques (de Poincaré) des pôles des fonctions ζ_{β_i}(z) permettent d'obtenir le développement asymptotique de la mesure de Mahler et de prouver directement que la conjecture de Lehmer est vraie pour la famille F.

Simone RUSCONI, BCAM, Bilbao, Spain. 2:00:00 23 janvier 2015 14:00 edp
Modelling of Delayed Processes in Controlled Radical Polymerization
Abstract

The normal practice in modelling of Controlled Radical Polymerization (CRP) is to apply Monte Carlo based stochastic simulation algorithms assuming the processes to be Markovian. We argue that such an approach overlooks the delayed nature of some processes involved in CRP and do suggest the methodology that overcomes this deficit. The proposed methodology offers the analytical representations for the probability density functions corresponding to the delayed processes as in the cases when the amount of delay is known exactly as it is unknown. Moreover, to improve the accuracy and efficiency of our modelling approach for computation of branching fraction in CRP, we replace the random walk Monte Carlo with the analytical solution. The comparison of the novel methodology with the traditional simulation methods and the experimental data is provided.

Hervé Gaussier, Institut Fourier. 2:00:00 22 janvier 2015 14:00 geo
Plongement algébrique de variétés presque complexes compactes
Abstract

Nous montrons une version presque complexe d'une question de Bogomolov concernant le plongement de variétés complexes compactes dans un espace projectif complexe. C'est un travail en commun avec Jean-Pierre Demailly.

Pierre Hyvernat, LAMA. 2:00:00 22 janvier 2015 10:00 limd
Représentation des fonctions continues entre ``streams'' (& Co.) par des types de données
Abstract

(Travail avec Peter Hancock) Brouwer savait déjà que les fonctions continues entre stream (avec la topologie produit habituelle) pouvaient être représentées par des arbres infinis. Peter Hancock a montré comment transformer ce théorème de représentation'' en théorie des types dépendant permettant de manipuler ces fonctions comme un type de données standard. Nous avons récemment pu généraliser ces idées à de nombreux types de données coinductifs en utilisant la notion destructure d'interaction'' (ou container indexé'' oufoncteur polynomial''). J'essaierais d'introduire les notions nécessaire au fur et à mesure : types dépendants, définitions inductives et coinductives, définitions inductive-récursives, etc.

Xavier Urbain, ENSIIE/CNAM. 2:00:00 15 janvier 2015 10:00 limd
Un cadre pour la preuve formelle adapté aux réseaux de robots mobiles
Abstract

Les réseaux de robots mobiles reçoivent depuis quelques années une attention croissante de la part de la communauté de l'algorithmique distribuée. Si l'utilisation d'essaims de robots coopérant dans l'exécution de diverses tâches est une perspective séduisante, l'analyse de la faisabilité de certaines tâches dans ce cadre émergent est extrêmement ardue, en particulier si certains robots présentent des comportements dits byzantins, c'est-à-dire arbitraires voire hostiles.

Pour obtentir des garanties formelles dans ce contexte, nous proposons un cadre mécanique formel fondé sur l'assistant à la preuve Coq et adapté aux réseaux de robots. Nous nous intéressons en particulier aux résultats d'impossibilité, fondamentaux en algorithmique distribuée en ce sens qu'ils établissent ce qui peut ou ne peut pas être réalisé et permettent de définir des bornes et, par là, l'optimalité de certaines solutions. Utiliser un assistant comme Coq travaillant à l'ordre supérieur nous permet d'exprimer aisément des quantifications sur les algorithmes, ceux-ci étant considérés comme des objets abstraits. Nous illustrons les possibilités offertes par notre développement en présentant les premières preuves formelles (et donc certifications) de certains résultats comme l'impossibilité de la convergence de robots amnésiques lorsqu'un tiers d'entre eux sont byzantins, ou encore l'impossibilité du rassemblement pour un nombre pair de robots évoluant dans R.

Thomas Cauwbergs, KU-Leuven. 2:00:00 8 janvier 2015 15:30 geo
Splicing and zeta functions
Abstract

Némethi and Veys proved a generalized monodromy conjecture using the technique of splicing. They considered a topological zeta function with respect to a differential form and included this information into the splice diagram. This splice diagram is essentially a decorated dual graph of an embedded resolution and splicing is operation on these splice diagrams. It splits such a graph into two parts and their topological zeta functions are related by a splicing formula. An interesting question is then what happens if we look at more general zeta functions such as the motivic zeta function and the monodromic motivic zeta functions. I will illustrate these (splice) diagrams using easy examples and give another proof of the splicing formula. The advantage of this proof is that it also is valid for these other zeta functions. However I will also discuss some problems arising from considering these other zeta functions.

Emmanuel Bultot, KU-Leuven. 2:00:00 8 janvier 2015 14:00 geo
Calcul de fonctions zêta à partir de modèles log lisses
Abstract

La fonction zêta Z_f(T) d'un polynôme complexe f est une fonction génératrice qui encode certaines propriétés arithmétiques de f. Elle est principalement étudiée pour son rôle central dans la conjecture de monodromie, qui prédit un lien précis entre ses pôles et des propriétés topologiques de f. Une formule classique permet de déterminer un ensemble de candidats pôles à partir d'une résolution des singularités de lieu d'annulation de f, mais cet ensemble introduit malheureusement beaucoup de faux pôles. Nous montrons comment le concept de log lissité, issu de la géométrie logarithmique, permet de travailler sur des résolutions des singularités partielles et ainsi d'obtenir un ensemble réduit de candidats pôles pour Z_f(T). Ce résultat ouvre des perspectives quant à la résolution de la conjecture de monodromie.

Francesco Fanelli, Ecole Normale Supérieure de Pise, Italie. 2:00:00 19 décembre 2014 14:00 edp
A singular limit problem for viscous compressible fluids in presence of capillarity
Abstract

In the present talk we are interested in a singular limit problem for a compressible Navier-Stokes-Korteweg system under the action of high rotation of the Earth. We study the incompressible and high rotation limits simultaneously. Moreover, we consider both the constant capillarity and the vanishing capillarity regimes. We will find that the limit velocity field is divergence-free. Moreover, we will completely characterize the equation satisfied by the limit density, which can be interpreted as a sort of stream-function for the limit velocity field. The results are based on suitable applications of the RAGE theorem.

François Laudendbach, Laboratoire Jean LERAY, Université de Nantes. 2:00:00 18 décembre 2014 14:00 geo
Aissa Guesmia, Institut Elie Cartan de Lorraine, UMR 7502, Université de Lorraine, Metz. 2:00:00 12 décembre 2014 14:00 edp
Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay
Abstract

In this work, we consider a class of second order abstract linear hyperbolic equations with infinite memory and distributed time delay. Under appropriate assumptions on the infinite memory and distributed time delay convolution kernels, we prove well-posedness and stability of the system. Our estimation shows that the dissipation resulting from the infinite memory alone guarantees the asymptotic stability of the system in spite of the presence of distributed time delay. The decay rate of solutions is found explicitly in terms of the growth at infinity of the infinite memory and the distributed time delay convolution kernels. An application of our approach to the discrete time delay case is also given. This is a joint work with Prof. Nasser-eddine Tatar, Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia.