We consider a graph having a single quantum system sitting at each node. The entire compound system evolves in discrete time steps by iterating a global evolution G. Moreover we require that this global evolution G be unitary, in accordance with quantum theory, and that this global evolution G be causal, in accordance with special relativity. By causal we mean that information can only ever be transmitted at a bounded speed, the speed bound being quite naturally that of one edge of the underlying graph per iteration of G. We show that under these conditions the operator G is local; i.e. it can be put into the form of a quantum circuit made up with more elementary, unitary gates -- each acting solely upon neighbouring nodes.
Joint work with Vincent Nesme and Reinhard Werner.
Les méthodes symplectiques pour les systèmes hamiltoniens sont certainement les intégrateurs géométriques les plus connus. Leurs performances surpassant celles des méthodes classiques sur de long temps d'intégration sont bien établies. Une généralisation de ces méthodes d'intégration aux EDP possédant une formulation hamiltonienne, ainsi qu'aux systèmes dérivant d'un lagrangien existe. Elle repose sur la préservation de lois de conservation, celles-ci étant reliées aux symétries du système via le théorème de Noether. Que se passe-t-il pour une EDP n'ayant pas de structure particulière: comment peut-on étendre les performances des intégrateurs symplectiques à une EDP quelconque? Comment conserver les symétries d'une équation par une méthode numérique? Le coeur de l'exposé consistera à présenter une approche d'invariantisation permettant de construire de façon systématique des schémas numériques préservant les symétries de Lie des équations continues. Elle repose sur le concept de repères mobiles introduit par Elie Cartan, puis développé et adapté par M. Fels et P. J. Olver. Les premières applications d'invariantisation ont été réalisées par P. Kim pour les EDO et pour quelques EDP. Une contribution au développement de la méthode sera présentée.
Rencontre annuelle du projet Types, au centre Paul Langevin à Aussois, du 12 au 15 mai.
Groupe de travail pour comprendre ce qu'on pourra de la théorie géométrique de la complexité à la Ketan Mulmuley. On se basera sur ses articles introductifs et les vidéos de ses conférences à l'Institute for Advanced Study en février 2009.
Nous considérons un graphe où les cellules sont caractérisées par un état qui est soit noir, soit blanc. À chaque pas de temps, une cellule, choisie aléatoirement, se met à jour et passe dans l'état minoritaire dans son voisinage. L'évolution globale de ce processus ne semble pas dépendre de la topologie du graphe: dans un premier temps des régions, pavées par des motifs dépendant de la topologie du graphe, se forment rapidement. Puis dans un deuxième temps, les frontières entre ces régions évoluent jusqu'à devenir relativement stables. Nous étudions ce processus sous différentes topologies: arbres, anneaux, grilles, cliques. Ceci nous permet de montrer que même si ce processus se comporte à priori globalement de la même manière sur n'importe quel graphe, modifier la topologie influence la façon dont les régions sont pavées (rayures, damiers), la structure et les mouvements des frontières entre les régions, l'ensemble limite, le temps de relaxation (le temps nécessaire pour que le processus atteigne une configuration de l'ensemble limite). Ainsi, Minorité entraîne des comportements riches et variés qui se révèlent difficile à analyser. Comprendre cette règle simple est néanmoins nécessaire avant de considérer des règles plus compliquées.
An efficient numerical scheme for simulations of fully nonlinear non-breaking surface water waves in 3D is presented. The water depth is either shallow, finite or infinite. The method is based on a fast, rapidly converging, iterative algorithm to compute the Dirichlet to Neumann operator. This is evaluated by expanding the operator as a sum of global convolution terms and local integrals with kernels that decay quickly in space. The global terms are computed very quickly via FFT. The local terms are evaluated by numerical integration. Analytical integration of the linear part of the prognostic equations in Fourier space is obtained to machine precision. The remaining nonlinear components are integrated forward in time using an RK-scheme combined with a special step size control technique. This yields a very stable and accurate time marching procedure. Zeros-padding in the spectral space represents the anti-aliasing strategy. The method requires no smoothing. Illustration through examples show that the total energy is well conserved during the numerical simulations. The scheme is stable and accurate, even for very long time simulations of very steep wave events. The scheme is easily parallelizable. It propagates for example a Stokes wave of slope 0.2985 with a phase shift error of about 0.3 after 1000 periods of propagation.
Dans un travail en commun avec Joseph Fu, on a pu établir d'une facon explicite les formules cinématiques pour le groupe unitaire $U(n)$. La solution est basée sur une algébraisation de la géométrie intégrale qui a été initiée par Semyon Alesker. Après avoir revu la formule cinématique classique de Chern-Blaschke-Santalo, je donne un apercu de la géométrie intégrale hermitienne.
Les mots (finis ou pas, en dimension 1 ou supérieure) peuvent être vus comme des modèles de formules de la logique monadique du second ordre (MSO), une formule définissant alors un langage. Cette approche a été suivie avec succès en dimension 1 par Büchi et Elgot dans les années 60 : les langages ainsi définis sont exactement les langages rationnels. De plus toute formule MSO est dans ce contexte équivalente à une formule EMSO (quantification existentielle au second ordre suivie d'une formule au premier ordre).
Plus récemment, Giammarresi, Restivo, Seibert et Thomas ont reconsidéré ces résultats dans le cas des figures'', c'est à dire des mots bidimensionnels finis avec bords marqués : cette fois les formules EMSO définissent exactement les langages
sofiques'' (projections de langages locaux), mais elles ne suffisent plus à capturer tous les langages définissable par une formule MSO.
L'objectif de cet exposé est de développer cette approche, en dimension 2, pour les sous-shifts (ensembles de configurations fermés topologiquement et invariants par décalages). Nous verrons alors que les sous-shifts sofiques (introduits par Weiss dans les années 70) ne correspondent pas aux sous-shifts définissables par formules EMSO. Nous donnerons néanmoins une caractérisation logique des sous-shifts sofiques et, inversement, nous donnerons une caractérisation ``combinatoire'' des ensembles de configurations définissables dans EMSO.
Les solutions stationnaires des équations aux dérivées partielles hamiltoniennes sont les points critiques du Hamiltonien. La stabilité de ces solutions est lié au nombre de valeurs propres la Hessienne du Hamiltonien. Il est possible de compter ces valeurs propres en utilisant un invariant topologique appelé indice de Maslov. Nous appliquons ce cadre de travail à certaines solutions stationnaires de l'équation de Korteweg de Vries avec forçage ainsi qu'aux ondes solitaires multi-modales de l'équation de Kawahara.
Dans cet exposé, nous présentons un nouveau modèle de type Boussinesq, dont le but est de pouvoir propager correctement les vagues et leurs cinématiques sur des domaines étendus allant jusqu'à plusieurs kilomètres au large. La construction du modèle repose sur trois idées: la première est de formuler le problème en fonction d'un opérateur de Dirichlet-Neumann exprimé, non pas à la surface libre de manière classique, mais au niveau de la surface du fluide au repos, de manière à travailler sur un opérateur statique. La seconde idée est de chercher une approximation de cet opérateur au moyen de séries de Taylor tronquées et d'approximants de Padé. La troisième est enfin d'utiliser une décompositionartificielle du fluide en deux couches de même densité, de manière à diminuer l'ordre des dérivées du problème. Le modèle final comprend ainsi quatre équations (en 2DH) ne faisant intervenir que des dérivées secondes au maximum, et nous montrons via une analyse linéaire et des simulations numériques non-linéaires que le modèle permet de propager des vagues avec précision jusqu'en eaux profondes.
Je présente l'approche algébrique au lambda-calcul basée sur les algèbres de lambda abstraction et sur les algèbres de Boole, qui a permis d'étudier la structure du treillis des lambda théories et d'obtenir des résultats d'incomplétude pour le sémantique du lambda calcul. Depuis, je présente mon dernier résultat: la lambda théorie minimum extensionelle n'est pas la théorie d'une domaine de Scott réflexive.
Voir la page dédiée.
TBA
On présentera tout d'abord le problème de l'élastodynamique (en formulation vitesse-contraintes) qui modélise la propagation de deux types d'ondes sismiques : les ondes P et les ondes SV. Ensuite, l'exposé s'orientera vers les méthodes de Galerkin Discontinues que nous comparerons brièvement aux méthodes de Différences Finies, Volumes Finis et Elements Finis (avantages/inconvénients). Nous décrirons alors une méthode de Galerkin Discontinue d'ordre élevé avec un schéma saute-mouton en temps combiné à un schéma centré en espace. Des résultats de stabilité (avec une étude énergétique) et de convergence seront ensuite présentés. Enfin, nous illustrerons l'exposé par quelques résultats numériques (taux de convergence et temps CPU), ainsi que par un cas test avec une source explosive.
Etant donné un Lagrangien sur un sous-fibré du fibré tangent à une variété, le principe du maximum de Pontryagine permet de définir une notion naturelle de courbe extrémale de ce Lagrangien. Lorsque ce Lagrangien est régulier, on peut adapter à ce contexte, la dualité classique entre formalisme lagrangien'' et
formalisme hamiltonien'' via une transformation de Legendre. Enfin, on peut aussi construire une unique pseudo-connexion'' intrinsèque sur un fibré adéquat, dont les
géodésiques'' sont les extrémales de ce Lagrangien. On donne également des conditions suffisantes pour qu'une extrémale soit (localement) optimale.
On définit une multiplicité d'intersection pour des hypersurfaces tropicales donnée par des volumes mixtes de polytopes associés. On montre que cette multiplicité a des propriétés comparables à celles de la multiplicité d'intersection dans le monde complexe. Par exemple, les théorèmes de Bézout et de Bernstein-Kouchnirenko restent valables dans le monde tropical.
We consider a drop of one liquid suspended in another liquid which is sheared as a model of a Couette device. Numerical simulations are conducted with an in-house volume of fluid (VOF) code with either a continuum surface force (CSF) algorithm with piecewise linear interface reconstruction or with a more accurate but computationally more intensive paraboloid representation of the interface (PROST). The methodology will be presented. The Oldroyd-B and Giesekus constitutive models are implemented. Comparisons with recent experimental results of P. Moldenaers (KU-Leuven) will be discussed
Controllability refers to the possibility of steering a system from a given initial state to a desirable state with a given class of control inputs. In continuum mechanics, the control if usually affected by a body force or boundary conditions. Viscoelastic flows pose an interesting class of problems for which the linearized problem is only partly controllable, and the question to what extent nonlinear problems can be controlled is in general quite difficult. The lecture will review partial result on this topic which I have obtained over the past few years.