On étudie la stabilité d'une famille de solutions stationnaires de l'équation d'Euler dans R^3 qui décrivent des tourbillons à symétrie cylindrique : le champ de vitesse est dans le plan horizontal, et ne dépend que de la distance à l'axe vertical. Ces solutions ont été étudiées notamment par Kelvin et Rayleigh au 19ème siècle, mais les seuls résultats de stabilité obtenus jusqu'ici concernent des perturbations très particulières (bidimensionnelles ou axisymétriques). On donne une condition suffisante sur le profil de vitesse du tourbillon garantissant la stabilité spectrale vis-à-vis de perturbations arbitraires. Il s'agit d'un travail en collaborationa avec Didier Smets
Dans cet exposé, je présenterai un problème qui modélise le mouvement d'un solide dans un fluide visqueux incompressible. On s'intéresse ici à l'évolution d'un seul obstacle qui se rétrécit en une particule ponctuelle dans un fluide de R^2 ou R^3. On montrera la convergence des solutions du système fluide-solide vers une solution des équations de Navier-Stokes sans obstacle grâce aux estimations d'énergie.
Arnaud Duran vous parlait récemment, entre autres, du système de Green-Naghdi et des difficultés liées à sa résolution numérique. Une stratégie a été récemment proposée par Nicolas Favrie et Sergey Gavrilyuk : il s'agit de résoudre un système approché, qui a l'avantage d'être quasilinéaire hyperbolique (plus d'opérateur d'ordre élevé) et le défaut de mettre en jeu des variables supplémentaires et un paramètre de relaxation. Nous donnerons une justification rigoureuse de cette approche. Il s'agit d'un problème de limite singulière qui serait classique s'il ne dépendait de deux paramètres.
La propagation des vagues dans les zones côtières implique des mécanismes complexes, représentant des enjeux de modélisation et numériques considérables. Si la plupart des processus non-linéaires sont généralement capturés par des modèles de type Boussinesq, ces équations conservent l’énergie et sont donc intrinsèquement inaptes à décrire les mécanismes dissipatifs, tels que ceux associés au déferlement des vagues par exemple. Pour gérer ce phénomène, nous introduisons un nouveau modèle dispersif fortement non-linéaire capable de prendre en compte les effets turbulents sous-jacents. L’approche est caractérisée par la présence d’une nouvelle variable basée sur la variation verticale de la vitesse, appelée enstrophie, modélisant l’énergie turbulente. Le modèle proposé partage une structure similaire aux équa- tions de Green-Naghdi et peut donc être intégré sur la base de tout modèle numérique existant pour ces équations. Dans le prolongement de travaux récents, nous considérons un discrétisation type Galerkin discontinue du système, basée sur un découplage entre les parties hyperboliques et non- hydrostatiques. Des validations numériques 1d et 2d impliquant la propa- gation de vagues déferlantes sur topographies non triviales sont proposées. En particulier, les comparaisons avec les données expérimentales confirment l’efficacité de la stratégie, mettant en évidence l’enstrophie comme un outil robuste et fiable pour la détection et la description des vagues déferlantes, même dans un cadre bidimensionnel.
Sous l'égide de Maître Yoda: Guy Métivier; et avec les conférences de Jedi confirmés: Claude Zuily, Nicolas Burq, Raphael Danchin, Eric Dumas, David Lannes ainsi que la conférence de Christophe Lacave, représentant des Padaouanes travaillant en EDPs et méca flu au niveau national.
On tentera d'illustrer et d'expliquer comment le phenomene classique de dispersion d'une onde se trouve modifie de facon significative en presence d'un bord convexe, qui conduit les ondes a se propager a proximite du bord, engendrant un nombre arbitraire de caustiques meme en temps petit, dont on verra qu'on peut les quantifier (ou/quand/quelle intensite). Il s'agit de travaux en collaboration avec Oana Ivanovici, Gilles Lebeau et Richard Lascar.
Ce travail s’inscrit dans un contexte de contrôle de la pollution d’origine agricole des ressources en eau, en alliant modélisation économique et hydrogéologique. Pour cela, nous définissons d’une part un objectif économique spatio-temporel prenant en compte le compromis entre l’utilisation d’engrais et les coûts de dépollution. D’autre part, nous décrivons le transport du polluant dans le sous-sol (3D en espace) par un système non linéaire d’équations aux dérivées partielles couplées de type parabolique (réaction-convection-dispersion) et elliptique dans un domaine borné. Des résultats génériques sont donnés et le cas particulier des faibles concentrations est traité, cas pour lequel un résultat d’unicité est démontré par analyse asymptotique. Quelques résultats numériques (2D en espace) illustreront ces résultats analytiques. Ces derniers pourront être élargis au cadre de la théorie des jeux, où plusieurs joueurs interviennent, avec notamment un résultat d’existence d’un équilibre de Nash.
We consider the initial value problem to the Isobe-Kakinuma model for water waves. As was shown by J. C. Luke, the water wave problem has a variational structure. By approximating the velocity potential in Luke's Lagrangian, we obtain an approximate Lagrangian for water waves. The Isobe-Kakinuma model is a corresponding Euler-Lagrange equation for the approximate Lagrangian. In this talk, we first explain a structure of the Isobe-Kakinuma model and then justify the model rigorously as a higher order shallow water approximation by giving an error estimate between the solutions of the model and of the full water wave problem. It is revealed that the Isobe-Kakinuma model is a much more precise model than the well known Green-Naghdi equations.
Bounds are obtained for Lp norm of the torsion function vΩ , i.e. the solution of −∆v = 1, v=0 on the boundary of Ω and v ∈ H1(Ω) in terms of the Lebesgue measure of an open set Ω ⊂ Rm and the principal Dirichlet eigenvalue λ1(Ω) of the Dirichlet Laplacian acting in L²(Ω). Joint work with Thomas Kappeler, University of Zürich.
It is well known that the motion of an incompressible fluid can be described in Eulerian variables (as a solution of a PDE, namely the continuity equation), or alternatively in Lagrangian variables (as a flow of an ODE). The classical DiPerna-Lions-Ambrosio theory ensures well-posedness and provides structural properties for solutions of the continuity equation, under suitable regularity assumptions on the velocity field and integrability assumptions on the solution. In my talk I will focus on the ``Lagrangianity'' of solutions, that is, on the property of being transported by an ODE flow, hence addressing the question whether an Eulerian solution is automatically a Lagrangian solution. After a brief summary of the DiPerna-Lions-Ambrosio theory, I will present two examples which are outside of the assumptions of such a theory, and in which nevertheless we can prove the Lagrangianity of solutions. The first one concerns vanishing viscosity solutions of the two-dimensional Euler equations, where we can use suitable duality methods (joint work with Stefano Spirito). The second example involves general continuity equations, and requires the proof of a new Lipschitz extension lemma (joint work with Laura Caravenna).
Dans cet expose je m'interesserai a la resolution du probleme de Stokes stationnaire dans un domaine perfore avec des conditions aux bords de type Dirichlet inhomogene. Je discuterai la possibilite de developper la solution sur cette geometrie complexe comme une somme de solution dans des geometries plus simples (obtenues en considerant les perforations independamment). Je m'interesserai ensuite a l'application de ces formules pour calculer une equation homogeneisee quand le nombre de perforations diverge alors que leurs rayons tendent vers 0. Cet expose s'appuie sur des resultats obtenus en collaboration avec Amina Mecherbet, Ayman Moussa et Franck Sueur.
La théorie du micromagnétisme, qui décrit l'aimantation des matériaux ferromagnétiques à l’échelle mésoscopique a fait l'objet d'études approfondies depuis sa construction dans les années 1940 par W. F. Brown et Landau-Lifshitz. Actuellement, une forte demande de la part d’une large communauté de physiciens et d'ingénieurs concerne l’obtention de modèles encore plus complexes et stochastiques (spatiaux et temporels). L’utilisation de structures aléatoires spatiales est en effet naturelle pour les aimants modernes, obtenus par alliage de plusieurs matériaux ayant des propriétés magnétiques différentes. Nous étudierons l’homogénéisation de ces matériaux, décrits par les équations de Landau-Lifshitz avec des coefficients aléatoires.
Nous présentons ici deux techniques, parfois concordantes, de stabilisation de schémas numériques semi-implicites pour les problèmes paraboliques non-linéaires. Les schémas proposés sont appliqués d'une part, en différences finies, lorsque les opérateurs sont discrétisés à l'aide de schémas compacts et, d'autre part, en éléments finis enutilisant une approche bi-grilles. Nous illustrons notre propos en considérant des modèles de champ de phase (Cahn-Hilliard et Allen -Cahn) et de mécanique des fluides (Navier-Stokes).
The aim of the talk is to provide a concise survey of some results about variational methods for image segmentation and inpainting, in the framework of functions of Special Bounded Variation in the sense of De Giorgi.
Local conservation laws of a system of differential equations are given by one or several expressions of the form divergence(flux vector)=0, holding on solutions of that system. For ordinary differential equations (ODE), conservation laws lead to first integrals and the reduction of order; for partial differential equations (PDE), they are used for analysis of solution behaviour, and provide globally conserved quantities, such as energy, momentum, etc., as well as more exotic ones. Conservation laws also play an important role in the numerical treatment of nonlinear PDE models. In this talk, we will review the general theory, including trivial and equivalent conservation laws, the characteristic form of conservation laws, their relationship with symmetries of DEs, variational systems, Lagrangians, and the first and second Noether's theorems. A systematic general procedure to seek conservation laws will be discussed, applicable to virtually any model; it will be compared to the Noether's theorem approach for variational models. A symbolic implementation of the direct method of conservation law computation in Maple will be discussed. Examples of conservation laws and conserved quantities for classical PDEs and some nonlinear models arising in contemporary work will be presented. Time permitting, we will consider a common framework for different types of conservation laws of PDE systems in three space dimensions, including their global and local formulations in static and moving domains given by volumes, surfaces, and curves.
Je présenterai quelques résultats que j'ai obtenus récemment en collaboration avec José Antonio Carrillo, François Delarue, François James et Nicolas Vauchelet. Ils concernent des équations d'agrégation, qui sont des équations de transport, conservatives, où le champ de transport est obtenu par convolution de la solution elle-même (l'équation étant donc non linéaire) par le gradient d'un potentiel qui peut n'être pas régulier. Ceci a pour conséquence que le champ de vitesse présente des discontinuités en espace. Nous verrons que les problèmes de Cauchy associés à ce type d'équations sont bien posés, en un sens proposé par Poupaud et Rascle, en se basant sur la théorie des EDO de Filippov. Nous verrons ensuite que ces solutions, non régulières (mesures bornées), s'approchent bien (à l'ordre 1/2 en le pas du maillage) par des schémas diffusifs (du genre décentré amont), en distance de Wasserstein.